TETRAHEDRON REPORT NUMBER 84

XANTHONOIDS OF TROPICAL PLANTS†

M. U. S. SULTANBAWA Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka

(Received 29 October 1979)

During the past 20 years, a large number of xanthones have been isolated from the higher plants and their natural occurrence has gained considerable importance. The reviews by Roberts in 1961¹ and by Dean in 1963² refer to the natural occurrence of 11 or 12 xanthones in higher plants and of 4 xanthones which had been described as fungal metabolites. In 1968, Gottlieb³ mentioned the isolation of 60 xanthones from higher plants and 7 fungal metabolites and in 1969 Carpenter *et al.*⁴ listed 82 xanthones from higher plants. Ollis⁵ in a lecture in Brazil in 1970 has given a concise survey of xanthonoids, polyisoprenylated xanthonoids and benzophenones. Gunasekera⁶ in 1976 recorded 183 xanthones from 5 families of tracheophyta and the numbers are rising rapidly partly due to the use of modern methods for their isolation and structure elucidation.

These results are of considerable chemotaxonomic interest. The natural xanthones from higher plants have been obtained mainly from about 150 plants associated with four families: Guttiferae, Gentianaceae, Moraceae and Polygalaceae. More recently isolated examples from other families (e.g. Lytheraceae,⁷ Loganiaceae,⁸ etc. have been reported. Even the two families Moraceae and Polygalaceae have so far been limited to a few species, but comparatively extensive studies have been made in the Guttiferae, and Gentianaceae. Hence this review will attempt mainly to cover the results from these two families.

Guttiferae

Majority of these plants are trees or shrubs and some of them yield useful timber (e.g. Clusia, Garcinia and Calophyllum). There are 40 genera and over 1000 species generally confined to the warm humid tropics. Some of these genera and species are found to be endemic to certain land masses, e.g. Kielmeyera is confined to the South American continent, Symphonia L. and Pentadesma Sabine are confined to Africa.

In the early classification^{9a} (1907) the family had been divided into 6 sub-families and 10 tribes whereas in a recent revised classification^{9b} given in Table 1 the sub-family Endodesmioideae has been incorporated into the sub-family Calophylloideae and a new sub-family Lorostermonoideae has been described.

In Sri Lanka there are 27 species listed in Table 2 belonging to the sub families Calophylloideae and Clusioideae and of these 13 species are endemic.¹⁰

A number of plants, mainly non endemic species belonging to the family have been reported to be used in medicine.¹¹ Table 3 gives the species and parts of some of the Sri Lanka plants used in the indigenous Ayurvedic system of medicine.

*Based on a Plenary Lecture delivered on 4 April 1979 at the ACS/CSJ Chemical Congress in Honolulu, Hawaii.

Sub family	Kielmeveroideae	
,	Kielmeyereae:	Kielmeyera (20 species) (Trop. S. America)
		Marila (7)
	Caraipeae:	Caraipa (12)
Sub family	Calophylloideac	
	Calophylleae:	Mesua (3 species) (Indo Mal.)
	1	Mammea (4) (Trop. America)
		Ochrocarpus (25) Palaeo trop.
		Calophyllum (80) Palaeo trop.
		Kayea (25)
	Endodesmieae:	Endodesmia (1)
Sub family	Clusioideae	
	Clusieae:	Clusia (200 species)
		Tovomita (40)
	.	Chrysochlamys (10)
	Garcinieae:	Allanblackia (6)
		Rheedia (30)
		Garcinia (220)
Sub family	Moronoboideae:	Pentadesma (5 species) (Trop. Afr.)
		Moronobea (5) (South Amer.)
		Montrouziera (6) New Caledonia
		Platonia (1 or 2)
	•	Symphonia (17) Mostly Madagascar
Sub family	Lorostemonoideae:	
		Lorostemon (1 species) Amazon

Table 1. Family Clusiaceae (Guttifierae)

Table 2. Clusiaceae (Guttiferae)

Calophyllum L.

- *C. bracteatum Thw. (Walu kina-S) *C. calaba L. (Guru kina-S, Chiru punnai-T)
- *C. cordato-oblongum Thw. (Kalu kina-S)
- *C. cuneifolium Thw. C. inophyllum L. (Domba-S, Punnai-T) C. pulcherrinum Wall ex Choisy

- *C. soulattri Burm. f. *C. thwaitesii Planch and Triana (Batu kina-S)
- C. tomentosum Wight *C. trapezifolium Thw.
- *C. walkeri Wight (Kina-S)
- *C. zeylanicum Kosterm.

Clusia L.

C. rosea Jacq.

Garcínia L.

- G. echinocarpa Thw. (Madol-S)
- *G hermonii Kosterm.
- G. mangostana L.
- G. morella (Gaertn.) Desr.
- G. quaesita (Ratu-goraka-S)
- G. spicata (Wight and Arn) Hooker f.
- *G. terpnophylla (Thw.) Thw. (Kokatiya-S)
- G. thwaitesii Pierre
- G. xanthochymus Hooker f. (Rata goraka-S)
- G. zeylanica Roxb. (Kaha goraka-S)

Kayea Wall

*K. stylosa Thw. (Suwanda-S)

Mesua L.

M. ferrea L. (Na-S)

- M. ferrea L. (form M. salicina Pl. and Tr.)
- *M. thwaitesii Planch and Triana (Diya Na-S)

(*Endemic); S = Sinhala; T = Tamil.

Table 3.

Plant	Part of the plant used
Calophyllum calaba L.	Bark
Calophyllum inophyllum L.	Resins, bark, roots, leaves and seed oil
Calophyllum tomentosum Wright	Seeds
Garcinia echinocarpa Thw.	Seed oil
Gurcinia cambogia (Gaertn.) Desv.	Bark
Garcinia mangostana L.	Pericarp
Garcinia marella Desy.	Resin
Mesua ferrea L.	Bark, flowers

The types of xanthone structures (over 100 at the moment) that have come out from the different Guttiferae species which number about 90 investigated so far, are summarised below according to their oxygenation pattern. It may be mentioned that the parent xanthone molecule has not been found as a natural product.

In the following Tables and figures the names of the xanthones and the plants from which they have been isolated are given under the oxygenation types.

Mono-oxygenated xanthones

Only three mono-oxygenated xanthones have been isolated from five genera (Table 4). One is the methyl ether of 2-hydroxyxanthone.

2-Hydroxyxanthone

Calophyllum cordato-oblongum Thw.²⁹ Calophyllam trapezifolium Thw.⁶⁶ Kielmeyera excelsa Camb⁹⁹ Kielmeyera rubriflora Camb¹⁰⁴ Kielmeyera speciosa St. Hill¹⁰⁶ Mammea acuminata⁶⁶ Mammea americana L.^{109,110} Mesua salicina Pl. and Tr.¹¹⁶ Ochrocarpus odoratus¹¹⁹ 4-Hydroxyxanthone Calophyllum brasiliense Camb^{23,24} Calophyllum cordato-oblongum Thw.²⁹ Mammea acuminata⁴⁶ Mammea americana L.^{109,110} Mesua salicina Pl. and Tr.¹¹⁶

2-Methoxyxanthone Kielmeyera coriacea Mart⁹⁷ Kielmeyera corymbosa (Spr.) Mart⁹⁸ Mammea acuminata⁴⁶ Mammea americana L.¹¹¹ Mesua salicina Pl. and Tr.¹¹⁶

Dioxygenated xanthones

The free hydroxyxanthones are 1,5- 1,7- and 2,6-dihydroxyxanthone. The 1,5- and 1,7-dihydroxyxanthones are found fairly extensively. Six methyl ethers and one methylene dioxy derivative have been reported from 11 genera as in Table 5.

Table 5. Dioxygenated xanthones

1,5-Dihydroxyxanthone	Calophyllum calaba L. ²⁰
Allanblackia floribunda Oliver ¹²	Calophyllum cuneifolium Thw. ³¹
Calophyllum bracteatum Thw. ²⁰	Calophyllum fragrans Ridlev ³²
Calophyllum pulcherrimum Wall. ex Choisy ⁴⁷	Calophyllum inophyllum I. ³⁹
Calophyllum thwaitesii Planch and Triana ⁵⁴	Calophyllum pulcherrimum Wall ex Choisy47
Calophyllum tomentosum Wight ⁴⁶	Calophyllum ramiflorum Schwarz 48
Calophyllum trapezifolium Thw. ⁵⁶	Colonhyllum sciemphyllum Vesa S
Calophyllum walkeri Wight ⁵⁴	Calaphylium soulattei Rurm f ³¹
Garcinia buchananii Baker ⁶⁴	Calophyllum thwaitasii Dianah and Trianes
Garcinia echinocarpa Thw. ⁷⁰	Colophyllum tomentaeum Wight
Garcinia hermonii Kosterm 74	Calaphylium transmitolium Thur St
Garcinia ternnanhylla Thy 70	Calophyllum walkeri Martist
Mammea acuminata ⁴⁶	Garcinia anomitolio Woll72
Mammea africana G Don ¹⁰⁸	Garcinia Lamonii Vestern 74
Mammea americana I ¹¹⁰	Garcinia nermonii Kosterm."
Manunca anericana L.	Uarcinia terphophysia Inw,"
Mesua salicing DL and Tr 116	Furunguna maaagascariensis
Mesua thugitarii Dianah and Trianall?	Kielmeyera canalaissima
Ochrosomus odoretus ¹¹⁹	Kleimeyera excelsa Camb ¹⁰⁰
Denrocurpus ouoratus Bhaadin agada micana Dirand Tai 123	Mammea acuminata**
Rheeala garaneriana Pl. and Iri."	Mammea africana G. Don ¹⁰⁶
1.5.754 1	Mammea americana L. ¹¹¹
1,7-Dinydroxyxanihone	Mesua ferrea L. ¹¹⁴
Allandiackia floridunda Oliver ¹²	Mesua salicina Pl. and Tr. ¹¹⁶
Calophyllum bracteatum Thw. ²⁰	Mesua thwaitesii Planch and Triana ¹¹⁷

Table 5. (Contd)

Platonia insignis¹²² Rheedia gardneriana Pl. and Tri.¹²³ Symphonia globulifera L.¹²⁴

2,6-Dihydroxyxanthone Mammea acuminata⁴⁶

1-Hydroxy-5-methoxyxanthone Calophyllum soulattri Burm. f.³¹ Mesua salicina Pl. and Tr.¹¹⁶

1-Hydroxy-7-methoxyxanthone Kielmeyera corymbosa (Spr.) Mart⁹⁸ Kielmeyera excelsa Camb⁹⁹ Mammea acuminata⁴⁶ Mesua ferrea L.¹¹³ Mesua salicina Pl. and Tr.¹¹⁶

2-Hydroxy-1-methoxyxanthone Kielmeyera excelsa Camb⁹⁹ Kielmeyera rupestris A. P. Duarte¹⁰⁵ Kielmeyera speciosa St. Hill¹⁰⁶

3-Hydroxy-2-methoxyxanthone Mammea acuminata⁴⁶ Ochrocarpus odoratus¹¹⁹

3-Hydroxy-4-methoxyxanthone Calophyllum cordato-oblongum Thw.²⁹ Mesua salicina Pl. and Tri.¹¹⁶

5-Hydroxy-1-methoxyxanthone Mammea acuminata⁴⁶ Mammea africana G. Don.¹⁰⁸ Pentaphalangium solomonse Warb¹²¹

1,2-Methylenedioxyxanthone Kielmevera excelsa Camb⁹⁹

Trioxygenated xanthones

The free hydroxyxanthones are 1,3,5-, 1,5,6-, 1,6,7- and 2,3,4-trihydroxyxanthones. Over 17 methyl ethers and two methylene dioxy derivatives have been reported from 9 genera as in Table 6.

Table 6. Trioxygenated xanthones

1,5-Dihydroxy-3-methoxyxanthone Kielmeyera coriacea Mart⁹⁶ Kielmeyera corymbosa (Spr.) Mart⁹⁸ Kielmeyera rupestris A. P. Duarte¹⁰⁵ Kielmeyera speciosa St. Hill⁶³ Mesua ferrea L.¹¹⁴

1,6-Dihydroxy-5-methoxyxanthone (Buchanoxanthone)

Calophyllum calaba L.²⁰ Calophyllum cordato-oblongum Thw.³⁹ Calophyllum cuneifolium Thw.³¹ Calophyllum fragrans Ridley³² Calophyllum inophyllum L.³⁹ Calophyllum soulattri Burn. f.³¹ Calophyllum tomentosum Wight⁴⁶ Calophyllum trapezifolium Thw.⁴⁶ Calophyllum walkeri Wight⁴⁴ Garcinia buchananii Baker⁴⁴ Rheedia gardneriana Pl. and Tri.¹²³

1,7-Dlhydroxy-3-methoxyxanthone (Gentisin)

Calophyllum brasiliense Camb²⁴ Garcinia eugenifolia Wall⁷² Mesua ferrea L.¹¹⁴

1,7-Dihydroxy-8-methoxyxanthone Kielmeyera excelsa Camb¹⁰¹ Kielmeyera petiolaris (Spr.) Mart¹⁰¹

2,3-Dihydroxy-1-methoxyxantbone Kielmeyera speciosa St. Hill¹⁹⁶

2,8-Dihydroxy-1-methoxyxanthone Calophyllum calaba L.²⁰ Kielmeyera excelsa Camb^{99,101} Kielmeyera ferruginea A. P. Duarte¹⁰² Kielmeyera petiolaris (Spr.) Mart¹⁰³

3,4-Dihydroxy-2-methoxyxanthone Kielmeyera coriacea Mart⁹⁶ Kielmeyera corymbosa (Spr.) Mart⁹⁸

1,2-Dimethoxy-3-hydroxyxanthone Kielmeyera rupestris A. P. Duarte¹⁰⁵ Kielmeyera speciosa St. Hill¹⁰⁶

1,2-Dimethoxy-8-hydroxyxanthone Calophyllum fragrans Ridley³² Kielmeyera petiolaris (Spr.) Mart¹⁰³

1,3-Dimethoxy-5-hydroxyxanthone Kielmeyera candidissima⁹⁵ Kielmeyera coriacea Mart^{96,97} Kielmeyera corymbosa (Spr.) Mart⁹⁸ Kielmeyera ferruginea A. P. Duarte¹⁰³ Kielmeyera speciosa St. Hill⁶³ Mesua thwaitesii Planch and Triana¹¹⁷

1,7-Dimethoxy-3-hydroxyxanthone Kielmeyera rupestris A. P. Duarte¹⁰⁵

1,7-Dimethoxy-8-hydroxyxanthone Kielmeyera excelsa Camb¹⁰¹ Kielmeyera petiolaris (Spr.) Mart¹⁰¹

1,8-Dimethoxy-2-hydroxyxanthone Calophyllum calaba L.²⁰

2,3-Dimethoxy-4-hydroxyxanthone Kielmeyera coriacea Mart⁹⁶

Kielmeyera corymbosa (Spr.) Mart⁹⁸ Kielmeyera ferruginea A. P. Duarte¹⁰² Kielmeyera rubriflora Camb¹⁰⁴ Kielmeyera rupestris A. P. Duarte¹⁰⁵ Kielmeyera speciosa St. Hill^{63,106}

2,4-Dimethoxy-3-hydroxyxanthone Kielmeyera coriacea Mart⁹⁷ Kielmeyera rubriflora Camb¹⁰⁴ Kielmeyera speciosa St. Hill¹⁰⁶ 3,7-Dimethoxy-1-hydroxyxanthone Calophyllum brasiliense Camb^{23,24}

6,7-Dimethoxy-1-hydroxyxanthone Calophyllum ramiflorum Schwarz⁴⁸

2,3-Methylenedioxy-4-hydroxyxanthone Kielmeyera coriacea Mart⁹⁶ Kielmeyera corymbosa (Spr.) Mart⁹⁸ Kielmeyera rubriflora Camb¹⁰⁴ Kielmeyera speciosa St. Hill^{63,106}

2,3-Methylenedioxy-4-methoxyxanthone Kielmeyera coriacea Mart⁹⁷ Kielmeyera corymbosa (Spr.) Mart⁹⁸ Keilmeyera rubriflora Camb¹⁰⁴ Kielmeyera rupestris A. P. Duarte¹⁰⁵ Kielmeyera speciosa St. Hill¹⁰⁶

1,3,5-Trihydroxyxanthone

Allanblackia floribunda Oliver¹²

1,5,6-Tribydroxyxanthone

Calophyllum calaba L.²⁰ Calophyllum cordato-oblongum Thw.²⁹ Calophyllum fragrans Ridley³² Calophyllum inophyllum L.³⁹ Calophyllum scribitifolium Hend and Wyatt Smith⁵¹ Garcinia buchananii Baker⁶⁴ Garcinia eugenifolia Wall⁷² Mammea africana G. Don¹⁰⁸ Mesua ferrea L.¹¹⁴ Mesua salicina PI. and Tr.¹¹⁶ Mesua thwaitesii Planch and Triana¹¹⁷ Ochrocarpus odoratus¹¹⁹ Symphonia globulifera L.¹²⁴

1,6,7-Trihydroxyxanthone Garcinia eugenifolia Wall⁷² Mammea africana G. Don¹⁰⁸

2,3,4-Trihydroxyxanthone Ochrocarpus odoratus¹¹⁹

Tetraoxygenated xanthones

The free hydroxyxanthones are 1,3,5,6-, 1,3,5,7- and 1,3,6,7-tetrahydoxyxanthones. Over 16 methyl ethers have been reported from 11 genera as in Table 7.

Table 7. Tetraoxygenated xanthones

1,3-Dihydroxy-2,5-dimethexyxanthone Kielmeyera candidissima⁹⁵

1,5-Dihydroxy-2,3-dimethoxyxanthone Calophyllum walkeri Wight⁵⁴

1,5-Dihydroxy-3,4-dimethoxyxanthone Tovomita pyrifolium PL and Tr.¹³⁰

1,6-Dihydroxy-5,7-dimethoxyxanthone Caraipa densiflora^{13*}

1,6-Dihydroxy-7,8-dimethoxyxanthone Caraipa densiflora¹³

1,7-Dihydroxy-3,6-dimethoxyxanthone Calophyllum inophyllum L.⁴⁰

3,8-Dihydroxy-1,2-dimethoxyxanthone Calophyllum trapezifolium Thw.⁵⁶

3-Hydroxy-1,5,6-trimethoxyxanthone Kielmeyera rupestris A. P. Duarte¹⁰⁵

1-Methoxy-3,5,6-trihydroxyxanthone Calophyllum sclerophyllum Vesq.⁵⁹

2-Methoxy-1,3,5-trihydroxyxanthone (Tevopyritolin C) Calophyllum bracteatum Thw.²⁰ Kayea stylosa Thw.⁷⁴ Pentadesma butyracea Sabine¹²⁰ Tovomita pyrifolium Pl. and Tr.¹³⁰

3-Methoxy-1,4,7-trihydroxyxanthone Garcinia eugenifolia Wall⁷²

7-Methoxy-1,3,8-trihydroxyxanthone Kielmeyera speciosa St. Hill¹⁰⁶

1,3,5,6-Tetrahydroxyxanthone Calophyllum sclerophyllum Vesq.⁵⁰ Mammea africana G. Don¹⁰⁸

Ochrocarpus odoratus¹¹⁹ Symphonia globulifera L.^{124,127}

1,3,5,7-Tetrahydroxyxanthone Garcinia pedunculata³⁹

1,3,6,7-Tetrahydroxyxaathone Allanblackia floribunda Oliver¹² Garcinia echinocarpa Thw.⁷⁰ Garcinia hermonii Kosterm.⁷⁴ Garcinia multiflora Champ.⁷⁸ Garcinia pedunculata⁵⁰ Mammea africana G. Don¹⁰⁸ Ochrocarpus odoratus¹¹⁹ Pentaphalangium solomonse Warb¹²¹ Symphonia globulifera L.^{124,127}

Pentaoxygenated xanthones

Four partially methylated 1,2,3,7,8- and 1,3,5,6,7-pentaoxygenated compounds have been isolated from 3 genera as in Table 8.

1,8-Dihydroxy-2,3,7-trimethoxyxanthone	1,7-Dihydroxy-2,3,8-trimethoxyxanthone
Calophyllum bracteatum Thw. ²⁰	Kielmeyera rubriflora Camb ¹⁰⁴
3.7-Dihydroxy-1.5.6-trimethoxyxanthone	5,6-Dimethoxy-1,3,7-trihydroxyxanthone
Mesua salicina Pl. and Tr. 116,212	Mesua salicina Pl. and Tr. 116.212

The structure of the above simple oxygenated xanthones have been established mainly from the UV, IR and NMR data of these compounds.

The UV spectrum varies in a characteristic manner depending on the oxygenation pattern and with the availability of a considerable amount of data, assignments can be readily made. Besides use of AlCl₃ shifts for chelated –OH, sodium acetate, sodium hydroxide and boric acid shifts, considerable information of the position of –OH groups in other locations can be obtained. Such data have been very valuable for a preliminary assignment which can then be substantiated from NMR chemical shifts for remaining aromatic protons, whose coupling patterns provide additional and definitive information about their location. More recently ¹³C NMR data²¹² have become available for a large number of xanthones and its use is rapidly increasing.

Prenylated and geranylated xanthones

The presence of prenyl and geranyl groups in the nucleus can be of chemotaxonomic value and a large number of them have been characterised in the last decade. Mono-, di- and tri-prenylated compounds have been isolated and in some of them the prenyl group has in certain cases undergone further change. The most characteristic of which is its oxidative cyclisation with an *ortho*-OH group to a chromene ring. Characterisation of these compounds and their structure elucidation has been simplified by the characteristic NMR patterns that these prenylated groups manifest. On account of which structures of some resulting complex molecules have been more rapidly established no doubt with other supplementary data. The next few figures summarise the information on these compounds.

There are no mono-oxygenated prenylated xanthones reported so far.

Dioxygenated monoprenylated xanthones

Guanandin (1) and Isoguanandin (2) are two examples with the prenyl group intact and in scriblitifolic acid (3) the prenyl group has been reduced and a terminal Me group converted to a -COOH group as shown in Fig. 1. These have been obtained from 7 Calophyllum species.

' Guanandin

Calophyllum bracteatum Thw.²⁰ Calophyllum brasiliense Camb^{23,25} Calophyllum calaba L.²⁰ Calophyllum cuneifolium Thw.³¹ Calophyllum inophyllum L.⁴⁰ Calophyllum scribitifolium Hend and Wyatt Smith⁵¹ Calophyllum walkeri Wight⁵⁴

leoguanandin

Calophyllum brasiliense Camb^{23,25}

Fig. 1.

Scribilitifolic acid

Fig. 1. Dioxygenated monoprenylated xanthones.

Dioxygenated chromenoxanthones and chromanoxanthones

Dehydrocycloguanandin (4) is a dioxygenated chromenoxanthone and cordato oblonguxanthone is a rare example of a chromanoxanthone. They are found in 2 Calophyllum species. Structures are given in Fig. 2.

Fig. 2. Dioxygenated chromenoxanthones and chromanoxanthones.

Trioxygenated monoprenylated xanthones

2- or 4- Prenylated xanthones **6a,b**, **7a,b** and 1,1-dimethylallylxanthones **(8)** (Globuxanthone) from Symphonia globulifera L. and **8a** isolated from Allanblackia floribunda Oliver as the 3,7-dimethyl ether are the examples of this type (Fig. 3) and they are found in 5 genera. The presence of the 1,1-dimethylallyl group can be readily identified from the NMR spectrum.

Fig. 3.

6 a: R' ≂ 3-methylbut-2-enyl, R² = H b: R' ≂ H, R² = 3-methylbut-2-enyl

1,3,5-Trihydroxy-2(3-methylbut-2-enyl)xanthone 6a

Calophyllum cuneifolium Thw.³¹ Calophyllum scribiltifolium

Hend and Wyatt Smith⁵¹ Calophylium soulattri Burm. f.³¹ Calophylium tomentosum Wight⁴⁶ Calophylium walkeri Wight⁵⁴

1,3,5-Trihydroxy-4(3-methylbut-2-enyl)xanthone 6b Pentaphalangium solomonse Warb.¹²¹

a: $\mathbf{R}^1 = 3$ -methylbut-2-enyl, $\mathbf{R}^2 = \mathbf{H}$ **b:** $\mathbf{R}^1 = \mathbf{H}$, $\mathbf{R}^2 = 3$ -methylbut-2-enyl

7

1,3,7-Trihydroxy-2(3-methylbut-2-enyl)xanthons 7a Allanblackia floribunda Oliver¹² Calophyllum canum Hook²⁷ C. neo-ebudicum Guillaumin⁴⁴ C. scriblitifolium Hend and Wyatt Smith⁵¹ Garcinia hermonii Kosterm.⁷⁴ Pentaphalangium solomonse Wart¹²¹

1,3,7-Trihydroxy-4(3-methylbut-2-enyl)xanthone 7b Symphonia globulifera L.³⁷

1,3,7-Trihydroxy-2(1,1-dimethyl-prop-2-enyl)xanthone 8a Allanblackia floribunda Oliver¹²

Fig. 3. Trioxygenated monoprenylated xanthones.

Trioxygenated chromenoxanthones

Globuxanthone 8

Symphonia globulifera L.126

The four compounds 6-deoxyjacareubin (9), 6-deoxyjsojacareubin (9a), tovoxanthone (10) and osajaxanthone (11) have the prenyl group oxidatively cyclised to a chromene ring. These compounds (Fig. 4) have been isolated from five different genera.

6-DeoxyJacareubin 9 Calophyllum bracteatum Thw.²⁰ Calophyllum brasiliense Camb²⁵ Calophyllum calaba L.²⁰ Calophyllum cuneifolium Thw.³¹ Calophyllum fragrans Ridley³² Calophyllum inophyllum L.^{30,40} Calophyllum neo-ebudicum Guillaumin⁴⁴ Calophyllum scribilitfolium

Hend and Wyatt Smith⁵¹ Calophyllum soulattri Burm. f.³¹ Calophyllum tomentosum Wight⁴⁶ Calophyllum trapezifolium Thw.⁴⁶ Kielmeyera corymbosa (Spr.) Mart.⁹⁶ Kielmeyera ferruginea A. P. Duarte¹⁰² Kielmeyera speciosa St. Hill⁶³

6-Deoxylaojacareubin 9a Pentaphalangium solomonse Warb¹²¹

10

Tovoxanthone 10 Tovomita choisyana Pl. and Tr.¹²⁶

Osejaxanthone 11 Calophyllum brasiliense Camb²⁵ Calophyllum canum Hook.²⁷ Kielmeyera coriacee Mart^{er} Kielmeyera corymbosa (Spr.) Mart^{ee} Kielmeyera terruginea A. P. Duarte¹⁰² Pentadesma butyracee Sabine¹²⁰

Fig. 4. Trioxygenated chromenoxanthones.

Trioxygenated diprenylated xanthones

The only example is 8-deoxygartanin (12) isolated from the fruit of Garcinia magostana whose structure is given in Fig. 5.

8-Deoxygartenin

Garcinia mangostana L.84

Fig. 5. Trioxygenated diprenylated xanthones.

Trioxygenated prenylated chromenoxanthones and dichromenoxanthones

From the bark extracts of 7 Calophyllum species studied in Sri Lanka two prenylated chromenoxanthones (calabaxanthone (13), trapezifolixanthone (14), and one di-chromenoxanthone, thwaitesixanthone (15) have been isolated (Fig. 6). Besides other evidence, studies on the chemical shift differences¹⁹⁰ in the NMR between, e.g. calabaxanthone and its acetate have shown a positive diamagnetic shift for the C₄-H protons and a negative paramagnetic shift for the C₃-H protons for a linear 2H-pyrano ring. Trapezifolixanthone structure has been confirmed by synthesis by Jain *et al.*¹³²

Calabaxanthone (13) Calophyllum bracteatum Thw.²⁰ Calophyllum calaba L.²⁰ Calophyllum cuneifolium Thw.³¹ Calophyllum tomentosum Wight⁴⁶ Calophyllum trapezifolium Thw.⁵⁵ Calophyllum walkeri Wight⁵⁴

Trapezifolixanthone (14) Calophyllum cuneifolium Thw.³¹ Calophyllum trapezifolium Thw.⁵⁵

15

Thwaitesixanthone (15) Calophyllum cuneifollum Thw.³¹ Calophyllum Thwaitesii Planch and Triana⁵⁴

Fig. 6. Trioxygenated chromenoxanthones.

Tetraoxygenated monoprenylated xanthones

Four monoprenylated tetraoxygenated xanthones (16, 17a, 17b and 18) and one 1,1-dimethylallyl xanthone (19) (symphoxanthone) have been described from 3 genera and their structures are given below in Fig. 7.

1-Hydroxy-3,5,6-trimethoxy-2(3-methylbul-2-enyl)xanthone (16) Calophyllum ramiflorum Schwarz⁴⁸

a: $R^1 = 3$ -Methylbut-2-enyl, $R^2 = H$ **b:** $R^1 = H$, $R^2 = 3$ -Methylbut-2-enyl

1,3,5,6-Tetrahydroxy-2(3-methylbut-2-enyl)xanthone (17a) Calophyllum canum Hook²⁷ Calophyllum tragrans Ridley³² Calophyllum inophyllum L.³⁹ Calophyllum neo-ebudicum Guillaumin⁴⁴ Calophyllum scribititolium Vesq.⁵⁰ Calophyllum scribititolium Hend and Wyatt Smith⁵¹

O

19

Symphonia globulifera L.126

OH

OH

1,3,5,6-Tetrahydoxy-4(3-methylbut-2-enyl) xanthone (Ugaxanthone) 17b Symphonia globulifara L.¹²⁵

OH

Symphoxanthone 19

HO

Celibixanthone 18 Cratoxylon celibicum Blume⁶¹

Fig. 7. Tetraoxygenated monoprenylated xanthones.

Tetraoxygenated chromenoxanthones

There are two xanthones (Lorostemin (20) and Jacareubin (21)) from 4 genera (Fig. 8). Jacareubin (21) has been found in a large number (16 species) of *Calophyllum* and is considered as a chemotaxonomic marker for this genus.

Lorostemin 20 Lorostemon coelhoi Paula¹⁰⁷ Lorostemon negrensis Fross¹⁰⁷

Fig. 8.

Jacareubin 21 Calophyllum bracteatum Thw.²⁰ Calophyllum brasiliense Camb²⁶ Calophyllum calaba L.²⁰ Calophyllum cordato-oblongum Thw.²⁹ Calophyllum cordato-oblongum Thw.²⁹ Calophyllum cuneifolium Thw.³¹ Calophyllum fragrans Ridley³² Calophyllum inophyllum L.³⁸ Calophyllum neo-ebudicum Guillaumin⁴⁴ Calophyllum ramiflorum Schwarz⁴⁸ Calophyllum sclerophyllum Vesq.⁵⁰ Calophyllum scriblitifolium Hend and Wyatt Smith⁵¹ Calophyllum thwaitesii Planch and Triana⁵⁴ Calophyllum tomentosum Wight⁴⁶ Calophyllum trapezitolium Thw.⁵⁵ Calophyllum walkeri Wight⁵⁴ Kielmeyera ferruginea A. P. Duarte¹⁰² Pentadesma butyracea Sabine¹²⁰

Fig. 8. Tetraoxygenated chromenoxanthones.

Tetraoxygenated furanoxanthone

Only one compound has been described from Allanblackia floribunda (4',5'-dihydro-1,6,7-trihydroxy-4',4',5'-trimethylfurano (2',3':3,4) xanthone (22) (Fig. 9).

22 (4',5'-dihydro-1,6,7-trihydroxy-4',4',5'-trimethylfurano (2',3' : 3,4) xanthone

Allanblackia floribunda Oliver¹²

Fig. 9. Tetraoxygenated furanoxanthones.

Tetraoxygenated diprenylated xanthones

This group contains mangostins (23a, b, c) and gartenin (24) isolated from two *Garcinia* species. Mangostin was isolated in 1855 but its structure elucidation was carried out by Stout and Yates in 1958. Their structures are given in Fig. 10.

a: $R^1 = H$, $R^2 = Me$ **b:** $R^1 = Me$, $R^2 = Me$ **c:** $R^1 = H$, $R^2 = H$

Mangostin 23a

Garcinia mangostana L.⁸¹ Garcinia terpnophylla Thw.⁷⁰ **β-Mangostin 23b** Garcinia mangostana L⁸²
> Gartanin 24 Garcinia magostana L⁸⁴

γ-**Mangostin 23c** Garcinia mangostana ∟^{as}

Fig. 10. Tetraoxygenated diprenylated xanthones.

Tetraoxygenated prenylated chromenoxanthones

10-O-Methylmacluraxanthone (25) and kayeaxanthone (26) were isolated from Kayea stylosa Thw. in Sri Lanka. The structure of kayeazanthone was established by comparing the NMR signals at position 4and 5- with similarly constituted known compounds owing to the small amount of material that was available. From a *Tovomita* species tovopyrifolin (27) has been isolated. They are shown in Fig. 11.

10-0-Methylmacluraxanthone 25 Kayea stylosa Thw.⁷⁴

Tovopyritolin A 27 Tovomita choisyana PI. and Tr.¹²⁸ Tovomita pyrifolium PI. and Tr.¹³⁰

Tetraoxygenated diprenylated chromenoxanthones and prenylated dichromenoxanthones

Three compounds pentadesmaxanthone (28), tovophyllin A (29) and tovophyllin B (30) have been isolated from two species and structures established as in Fig. 12.

28 Pentadesmaxanthone 28 Pentadesma butyracea Sabine¹²⁰

29 Tovophyilin A 29

30 Tovophyllin B 30 Tovomite macrophylla (Pi. and Tr.) Walp¹²⁹ Tovomite pyrifolium Pl. and Tr.¹³⁰

Fig. 12. Tetraoxygenated triprenylated chromenoxanthones.

Trioxygenated geranylated xanthones

Cowanin (31) and cowanol (32) have been isolated from *Garcinia cowa* and structures are given in Fig. 13.

Fig. 13. Trioxygenated geranylated xanthones.

Tetraoxygenated geranylated xanthones

Cowaxanthone (33) and rubraxanthone (34) have been isolated from two Garcinia species and structures are in Fig. 14.

Fig. 14. Tetraoxygenated geranylated xanthones.

Polyisoprenylated xanthonoids

The classic member of this class is gambogic acid (35) as structural work on it started in 1809 but its correct molecular formula was first reported in 1963. The first polyisoprenylated xanthoniod structure to be elucidated was that of morellin. This was achieved after a detailed and extensive chemical investigation by Venkataraman and his group over a period of years. The special feature in the proposed morellin structure was that one of the benzene rings of the "xanthone type" precursor had been modified during the biosynthetic sequence by transformations leading to a bicyclo [2,2,2] octenone skeleton. This structure was subsequently established by an X-ray crystallographic study.

Meanwhile the structural studies on gambogic acid, $C_{38}H_{44}O_8^{56,87,133-139,142,143}$ was being independently studied in several laboratories and the view that this compound contained a xanthonoid residue (C_{13}) in

association with five isoprenoid units $(5 \times C_5)$ became established with the elucidation of its constitution (Venkataraman,⁸⁶ Yates⁸⁷ and Ollis¹³⁶).

Gambogic acid has been isolated from G. morella¹⁴⁰ and G. hanburyi. Its structure can be represented as shown in formulae (35) and (35a). (see Fig. 15).

Fig. 15.

In addition to morellin (36) Venkataraman *et al.* have also isolated from the seeds of *Garcinia morella*, isomorellin, morellic acid, isomorellic acid, deoxymorellin, morellinol and dihydroisomorellin (Fig. 15a). The compounds all, have closely related structures and 7 related natural polyisoprenylated xanthonoids are recognised at present.

Prenylated benzophenones

It will be appropriate in this review to include three polyisoprenylated benzophenones isolated from *Garcinia* and *Clusia* species. Venkataraman *et al.* obtained xanthochymol (42) lemon yellow needles, m.p. 135°, $[\alpha]_D^{29} + 143.5^{\circ}(CHCl_3)$ and isoxanthochymol (43) pale yellow cubes m.p. 242°, $[\alpha]_D + 208^{\circ}(MeOH)$ from *G. xanthochymus* fruits^{79a,b,c} (also isolated by Dreyer from the fruits of *Clusia rosea* Jacq.) and more recently from *G. indica* and *G. cambogia* fruits. The major pigment xanthochymol was shown to be a catechol derivative and structure, assigned from spectral analysis, indicated a β -diketone, capable of enolization, whereas isoxanthochymol was similar in all respects except the ability to enolize. Xanthochymol (42) has been converted to isoxanthochymol (43) by treatment of a benzene solution at

room temperature with HI or trifluoroacetic acid. X-ray analysis of the di-p-bromobenzene sulphonate of isoxanthochymol enabled them to fix the structure of both.

Pai et al. at Madras^{79c} have isolated from the roots of G. cambogia another compound called cambogin (44), m.p. 242°, $[\alpha]_D - 212.6^\circ$ (MeOH). It has been shown to be an enantiomer of isox-anthochymol by X-ray structure determination by Rogers et al. (Fig. 16a).

Venkataraman *et al.* determined the structure of isoxanthochymol from an X-ray crystallographic analysis of its di-*p*-dibromobenzene sulphonate whereas the structure of xanthochymol was deduced from isoxanthochymol by a comparison of the physical and chemical data of the two compounds. Blount and William¹⁴¹ have shown by X-ray analysis that the compound isolated from *G. xanthochymus* by Dr. Basa, had the structure **45** (Fig. 16(b)).

Fig. 16(b).

Direct comparison of this 45 with the xanthochymol (42) of Venkataraman by NMR, m.p. and mixed m.p. has conclusively confirmed their identity.

These results again emphasize the need to supplement structural assignment from chemical and spectral data by synthesis or X-ray determination. In the case of more complex molecules X-ray method in the future will be the more rapid one.

Ollis *et al.* had obtained from the stemwood of *G. hombroniana*⁷⁵ a deep yellow oil and assigned it a structure **46a**. In the light of xanthochymol structure, Venkataraman *et al.*⁸⁶ have proposed the alternative structure **46** in keeping with that of xanthochymol (Fig. 17).

Bronianone

From Monobea pulchra a geranylated benzophenone, marupone (47) has been isolated by Gottlieb¹¹⁸ (Fig. 17a).

From Clusia congestiflora, Stout et al.⁵⁹ have isolated clusianone.

Although diphenyl derivatives have been reported, e.g. aucuparins (Gottlieb¹⁴⁴) and diphenyls (Scheinmann¹⁴⁵), the first example from the Guttiferae where the polyketide chain undergoes an aldol type of condensation to give a diphenyl carboxylic acid as in Fig. 18 has recently been reported from Garcinia hermonii Kosterm.⁶

It can be represented by two structures **48** and **48a** to accomodate all the chemical evidence available (Fig. 18a).

The free acid (hermonionic acid) or its methyl ester on heating undergoes a 1,5-sigmatropic change to give a lactone hermoniolic acid lactone (49) which has been shown to have the structure given in the sequence in Fig. 19.

Gottlieb *et al.* have recently described the isolation and structure assignment of three xantholignoids from *Kielmeyera coriacea* and *Caraipa densiflora*¹⁴⁶ which have been called respectively kielcorin (50), cadensin A (51) and cadesin B (52) (Fig. 20). ¹³C NMR data which has now become available for a number of natural xanthonoids²¹² was used effectively in the structure assignment.

Nielson and Arends¹⁴⁷ have shown that Kielcorin has structure **50b** by hydrolysis with NaOH aq and establishing the structure of the product.

The bark benzene extractives of *Calophyllum zeylanicum* Kosterm.⁵⁷, gave a new tetrahydroxanthone named zeyloxanthonone (0.04%) m.p. 137°, which has been shown to be 6,8-dihydroxy-1,1,7-tri (3-methylbut-2-enyl)-2-oxo-1,2,3,4-tetrahydroxanthen-9-one (53). The complete data on which this structure was assigned has just appeared¹⁴⁸ and the ¹³C NMR data for the compound is given in Fig. 21.

¹³C-NMR (25.15 MHz) data (ppm) of zeyloxanthonone in CDCI₃ Fig. 21.

This is the first report of the isolation of a triprenylated tetrahydroxanthone as a natural product. Hostettmann *et al.*¹⁵⁰ have recently reported the isolation of a tetrahydroxanthone glucoside from *Gentiana campestris*. The isolation of a tetrahydroxanthone should be of biogenetic and chemotax-onomic interest.

A list of the Guttiferae species that have been investigated so far is given in Appendix.

Gentianaceae

Plants belonging to the family Gentianaceae are classified into five sub families⁹ as given below in Table 9 and are found in all parts of the world. The tropical plants are generally found at a higher elevation, and they have been widely used in local medicine. Simple polyoxygenated xanthones have been isolated from most of the plants that have been investigated and no attempt will be made to tabulate all the simple xanthones that have been isolated except to draw some very broad generalisation from the data available.

		Table 9.	
Tribe 1.	Gentianeae		
	Sub-tribe 1.1	Erythraeineae:	Enicostema (2) Cicendia (2)
			Exaculum (1)
		(Erythraea) =	Centaurium (40)
			Curtia (10)
			Sabbatia (10)
			Blackstonia (5)
			Canscora (20)
	Sub-tribe 1.2	Exacinae'	Exacum (35)
	040-0100 1.4	EMIONAU.	Cotlanthera (4)
			Sebaea (100)
	Sub-tribe 1.3	Chironiinae:	Chironia (35)
			Orphium (1)
			Gentianothamnus (1)
	Sub-tribe 1.4	Gentiainae:	<u>Gentiana</u> (200)
			Gentianella (250)
			Ixanthus (1)
			Swartia (including Frasera 90)
	Sub-tribe 1.5	Tachiinae	Lisianthus (30)
	000-010C 1.5	i asmillas.	Tachia (3)
			Macrocarpaea (30)
			Chorisepalum (4)

Table 9. (Contd)				
Tribe 2.	Rusbyantheae:	Rusbyanthus (1)		
	Monotypic (i.e. one genus and one species)			
Tribe 3.	Helieae:	Prepusa (5)		
		Schultesia (20)		
		Chelonanthus (15)		
		Symbolanthus (10)		
		Helia (10)		
Tribe 4.	Voyrieae:	Voyria (8)		
Tribe 5.	Leiphaimeae:	Voyriella (2)		
		Leiphaimos (40)		

From about 50 plants belonging to this family about a 100 xanthones have been isolated. If the xanthone glycosides, about which some account in greater detail will be given below, are not included the majority of the natural xanthones are tetra and penta-oxygenated ones showing a wide variety of oxygenation patterns. They have been found in the free form or as their methyl ethers. The Table 10 below summarises some generalisations from the data available from 29 plant species^{151,152} in 4 genera.

Table 10.

Genus	No. plants in genera	No. of different compounds isolated	Position at which oxygenation is absent
Canscora	1	20	2- and 4-
Frasera	2	17	6-
Gentiana	9	19	2- and 6-
Swertia	17	20	2-, 4- and 6-
	S. b	imaculata	6- only
	S. pu	urpurescens	2- and 6-

Besides in 12 species the oxygenation pattern 1,3,5,8- and 1,3,7,8- only have been found.

It should be observed that oxygenation at position 6- is absent in 28 species in three genera and at position 2- in 26 species in 2 genera. This information may be of value from a chemotaxonomic point of view although negative information is generally considered to be of less value.

With recognition of the occurrence of xanthone glycosides in some species extensive investigations are in progress with their characterisation and structure elucidation.

Naturally occurring xanthone glycosides

Hostettamann and Wagner¹⁵³ have recently reviewed the xanthone glycosides. A distinction has to be made between C-glycosides and O-glycosides. In C-glycosides a C-C bond links the sugar moiety to the xanthone nucleus and they are therefore resistant to acidic and enzymic hydrolysis whereas the O-glycosides have typical glycosidic linkage.

C-Glycosides

Mangiferin (51a) was isolated first by Wiechowski in 1908 from Mangifera indica L. (Anacardiaceae). It is of widespread occurrence in angiosperms and has also been identified in ferns. Its structure has been established as 2-C- β -D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone.¹⁵⁴⁻¹⁵⁷ An isomer, isomangiferin (52) has been isolated from the aerial parts of Anemarrhena asphodeloides Bunge (Liliaceae) and identified as 4-C- β -D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone.¹⁵⁸ Another C-glycoside isolated from the bark of Mangifera indica L. has been shown to be 2-C- β -D-glucopyranosyl-3-methoxy-1,6,7-trihydroxyxanthone and is generally referred to as homomangiferin (51b)¹⁵⁹ (Fig. 22).

Fig. 22.

From roots of *Canscora decussata* Schult¹⁶⁰ a new glycoxanthone with an oxidation pattern different to mangiferin was isolated in 1973 and its structure has been established by chemical transformation and spectral (UV, IR, NMR and MS) data as 2-C- β -D-glucopyranosyl-1,3,5,6-tetrahydroxyxanthone (53). In the same year another glycoxanthone isolated from the rhizome of *Iris florentina* L. (Iridaceae)¹⁶¹ has been shown to be 2-C- β -D-glucopyranosyl-5-methoxy-1,3,6-trihydroxyxanthone and called irisxanthone (54).

In the fern Asplenium montanum Willd. (Aspleniaceae)¹⁶² two hydrolysable derivatives of the xanthone-C-glycosides, mangiferin and isomangiferin were described. Both are O-glycosides and the hydrolysable sugar moiety is attached to the C-glycosyl moiety in an unidentified point. Two new O-glucosides of mangiferin have been isolated by Goetz and Jacot-Guillarmod¹⁶³ from the leaves of Gentiana aslepiadea¹⁶³ and shown to be mangiferin-7-O- β -D-glucoside and mangiferin-6-O- β -D-glucoside **55a** and **55b** (Fig. 23).

55a $R^1 = H$, $R^2 = \beta$ -D-glucosyi **55b** $R^1 = \beta$ -D-glucosyi, $R^2 = H$

Fig. 23.

A number of similar flavones have been recently recognised and therefore corresponding xanthones too may soon be described.

Xanthone C-glycosides seem to be a unique taxonomic marker in the plants and seem to be more closely related to flavonoids than to xanthones in their distribution and biogenesis.

O-Glycosides

In 1969 only three O-glycosides gentiacauloside (75) from Gentiana acaulis,¹⁸⁸ Gentioside (57) from G. lutea, Swertianolin (62) from Swertia japonica had been reported. But within the last 10 years more than 20 xanthone O-glycosides have been described and their natural occurrence has so far been restricted to the Gentianaceae as given in the Tables 11-14.¹⁵³

Table 11. Trioxygenated xanthones

rut. rutinose; prim. primeverose.

Table 12. Tetraoxygenated xanthones.

Desmethylbellidifolin $R^1 = R^2 = H$ Bellidifolin $R^1 = Me$, $R^2 = H$ $R^1 = R^2 = Me$

Glycoside		Oxidation	Natural sources		
	1	3	4	5	- <u> </u>
58	O-glc.	OH	OMe	OMe	- Swertia bimaculata ¹⁶⁸
59	O-glyc.	OH	OMe	OMe	Swertia bimaculata ¹⁶⁹
60	OH	O-glc.	OMe	OMe	Swertia bimaculata ¹⁶⁸
	1	3	5	8	
61	O-glc.	ОН	OH	ОН	- Swertia purpurascens ¹⁷⁰ Swertia racemosa ¹⁷¹ Swertia randaiensis ¹⁷²
62	O-glc.	ОМе	ОН	ОН	Swertia purpurascens ¹⁷⁰ Swertia racemosa ¹⁷¹ Swertia iaponica ¹⁷¹
63	O-glc.	OMe	OMe	OH	Swertia bimaculata ¹⁶⁹ Frasera caroliniensis ¹⁷³
64	ОН	ОН	ОН	O-glc.	Gentiana campestris ¹⁷⁴ Gentiana germanica ¹⁷⁵ Gentiana ramosa ¹⁷⁵
65	он	ОМе	ОН	O-glc.	Gentiana campertris ¹⁷⁴ Gentiana germanica ¹⁷⁵ Gentiana ramosa ¹⁷⁵ Swertia perennis ¹⁷⁶ Swertia purpurascens ¹⁷⁰

Norswertianin Swertianin Swertiapernin

Gentiacaulein Decussatin

 $\mathsf{R}^1=\mathsf{R}^2=\mathsf{R}^3=\mathsf{H}$ $R^1 = Me, R^2 = R^3 = H$ $\mathbf{R}^{1} = \mathbf{R}^{3} = \mathbf{M}\mathbf{e}, \ \mathbf{R}^{2} = \mathbf{H}$ $R^{1} = R^{2} = Me, R^{3} = H$ $R' = R^2 = R^3 = H$

Glycoside		Oxidatio	Natural sources		
	1	3	7	8	
66	O-glc.	ОН	ОН	ОH	Swertia dilatata ¹⁷¹ Swertia gracilescens ¹⁷¹ Swertia perennis ¹⁷⁶ Contiana havaica ¹⁷⁷
67	O-prim.	OH	ОН	ОН	Gentiana bavarica ¹⁷⁷ Gentiana verna ¹⁷⁸
68	O-prim.	OMe	ОН	ОН	Gentiana bavarica ¹⁷⁷ Gentiana verna ¹⁷⁸ Gentiana nivalis ¹⁷⁹
69 70	OH OH	OMe OMe	O-rut. O-(Ac)	ОН	Gentiana bavarica ¹⁸⁰
			rut.	OH	Gentiana bavarica ^{177,180}
71	ОН	OMe	OH	O-glc.	Gentiana verna ¹⁷⁸
72	ОН	ОМе	OH	O-prim.	Gentiana alpina ¹⁸¹ Gentiana ciliata ¹⁸¹ Gentiana kochiana ¹⁸²
73	O-prim.	OMe	OMe	OH	Swertia perennis ¹⁷⁶
74	O-prim.	ОМе	ОН	ОМе	Gentiana bavarica ¹⁷⁷ Gentiana nivalis ¹⁷⁹ Gentiana verna ¹⁷⁸ Gentiana acaulis ¹⁸⁸
75	ОН	ОМе	O-prim.	ОМе	Gentiana alpina ¹⁸¹ Gentiana angustifolia ¹⁸¹ Gentiana ciliata ¹⁸¹ Gentiana clusil ¹⁸¹ Gentiana kochiano ¹⁸¹
76	OMe	O-prim.	ОМе	ОН	Gentiana alpina ¹⁸¹ Gentiana angustifolia ¹⁸¹ Gentiana clusil ¹⁸¹ Gentiana ciliata ¹⁸¹ Gentiana kachiana ¹⁸²
77	O-prim.	ОМе	ОМе	ОМе	Gentiana alpina ¹⁸¹ Gentiana bavarica ¹⁷⁷ Gentiana ciliata ¹⁸¹ Gentiana clusil ¹⁸¹ Gentiana nivalis ¹⁷⁹ Gentiana verna ^{178,183} Swertia perennis ¹⁷⁶

glc. glucose; prim. primeverose; rut, rutinose.

glc. glucose; glyc. unidentified sugar.

However with the available new isolation techniques more and more glycosides would be isolated from families containing polyoxygenated xanthones. So far O-monosides and O-biosides have been isolated. In the former β -D-glucose is the only monosaccharide so far recognised whereas in the analogous flavones other sugars like D-galactose, L-rhamnose, L-arabinose and D-apiose have been frequently found. Of the two disaccharides discovered to date primeverose or 6-O-(β -D-xylopyranosyl)- β -D-glucopyranose is the more common and rutinose or 6-O-(α -L-rhamnopyranosyl)- β -D-glucopyranose is the rarer one. The latter sugar has been found in a tetraoxygenated xanthone of *Canscora decussata* Schult and in a tetraoxygenated xanthone of *Gentiana bavarica* L. On the other hand Wagner¹⁸⁴ has described 25 disaccharides in various flavonoid glycosides. A diglucoside norswertianin-1-O-glucosyl-3-O-glucoside has been described for the first time from *Swertia perennis*.¹⁸⁷

The aglycones have tri-, tetra- or penta-oxygenation pattern. 1,3-oxygenation pattern is found in each compound with further oxygenation in the 4-, 5-, 7- or 8-position. So far substitution at 6-position has not been encountered in keeping with the earlier observations on free xanthones.

Upto date only two trioxygenated glycosides have been identified as 1-hydroxy-7-methoxy-3-Oprimeverosylxanthone (57) in the roots of several *Gentiana* species^{165,189} and 5-hydroxy-1-methoxy-3-Orutinosylxanthone (56) in the aerial parts of *Canscora decussata* Schult.¹⁶⁴ On the other hand several tetraoxygenated xanthones have been isolated with 1,3,4,5-; 1,3,5,8- and 1,3,7,8-oxygenation pattern and the last one having the largest number so far (Table 13). A pentaoxygenated compound from the leaves of *Gentiana campestris* L.¹⁸³ has been characterised, as 1-O- β -D-glucopyranosyl-3,8-dihydroxy-4, 5-dimethoxyxanthone (79).

An acyl-O-glucoside (80) was isolated by Hostettmann *et al.* from the aerial parts of *Gentiana* bavarica L.¹⁷⁷ With ¹³C NMR data the acyl group has now been assigned to position 4 of rhamnose. In contrast several acylated flavone glycosides have been recorded.

A glycoside isolated from Gentiana campestris¹⁵⁰ needs special mention as it is the first example of a tetrahydroxyxanthone glycoside. Such xanthones are rare as natural products and the occurrence of such a compound in Calophyllum zeylanicum Kosterm.¹⁴⁸ has already been mentioned. Its structure was elucidated by spectral analysis including ¹³C data as 1,3,5-trihydroxy-8- β -D-glucopyranosyl 5,6,7,8-tetrahydroxyxanthone (81). Its occurrence is of great biogenetic significance because the corresponding xanthone glucoside, possessing the same oxidation pattern and carrying the hydrolysable sugar at the same position is present in relatively high concentration.

An O-glycoside found in the urine of cows fed on mango leaves is euxanthic acid (1-Hydroxy-7-Oglucoronylxanthone).

From a consideration of the above table it should be noted that 13 xanthones carry their glycosidic

M. U. S. SULTANBAWA

group at position 1. This is somewhat surprising owing to its closeness to the CO group. Besides the corresponding position in the flavone nucleus (i.e. position 5) is rarely glycosylated. Therefore the study of the biosynthetic pathway of these glycosides should be of particular interest.

Hostettmann has carried out detailed investigation on the occurrence of the glycosides in the Gentianaceae and has attempted to provide chemical information about the sub-genera¹⁹² and sections of this family.

Moraceae

Plants of the family Moraceae have been intensively investigated by Venkataraman *et al.*¹⁹³ and a variety of flavonoids and in particular prenylated flavonoids have been characterised. Xanthones have been reported from a few species. From *Maclura pomifera* root bark Wolfrom *et al.*²⁴ characterised the three prenylated xanthones osajaxanthone (11), alvaxanthone (82) and macluraxanthone (83) as in Fig. 24, and more recently 1,3,6,7-tetrahydroxyxanthone. This species is known as *Toxylon pomiferum* Rafin

Fig. 24.

and a specimen obtained from U.S.A. has been investigated by Venkataraman in 1973.¹⁹⁵ They showed the presence of the above three prenylated xanthones and in addition isolated 6-deoxyjacareubin (9), 8-deoxygartanin (12) and another called toxylxanthone A which is in fact trapezifolixanthone (14) isolated earlier from *Calophyllum trapezifolium* (Fig. 25). The last three constituents and osajaxanthone have been isolated from Guttiferae species as mentioned earlier. In addition they recorded the presence of three other xanthones, toxylxanthone B (84), toxylxanthone C (85) and toxylxanthone D (86) (Fig. 26). The structure of toxylxanthone B (84) has been revised by Kirtany and Paknik¹⁹⁶ and confirmed by Scheinmann and Cotterill¹⁹⁷ and this is shown.

1488

Fig. 26.

From two other moraceae species Clarisia racemosa R. and P.¹⁹⁷ and Chlorophora tinctoria Gand¹⁹⁸ the presence of 1,3,6,7-tetrahydroxyxanthone has been established. Seshadri *et al.* isolated cudraniaxanthone (87) from Cudrania javanensis¹⁹⁹ (Fig. 26a).

Fig. 26(a).

Polygalaceae

Polygalaxanthone A

Polonsky et al. reported for the first time the isolation of two xanthones, polygalaxanthone A (88) and B (89) from Polygala paenea L.²⁰⁰ The structure of the polygalaxanthone A was corrected later by Stout and Fries²⁰¹ as 1,2,3-trimethoxy-6,7-methylenedioxyxanthone (88). Polygalaxanthone B is 1,2,3,4,8-pentamethoxyxanthone (89). Both are pentaoxygenated xanthones. Dreyer has reported from Polygala macradenia Gray,²⁰² the above polygalaxanthone A, 1-methoxy-2,3: 6,7-bis (methylenedioxy) xanthone (90) (Fig. 27) and 1,2,3,4,6,7-hexamethoxyxanthone (91a). Gottlieb et al. have reported from Polygala spectabilis DC²⁰³ the presence of three 1,2,3,7,8-pentaoxygenated xanthones: 1,2,3,7,8-pentamethoxy-xanthone (91b), 2-hydroxy-1,3-dimethoxy-7,8-methylenedioxyxanthone (92a) and 1,2,3-trimethoxy-7,8-methylenedioxyxanthone (92b) (Fig. 28).

Polygalaxanthone B

Fig. 27.

91a $R^1 = R^2 = OMe$, $R^3 = H$ **91b** $R^1 = R^2 = H$, $R^3 = OMe$

92a R¹ = H 92b R¹ = Me

Fig. 28.

From polygala tennuifolia Willdenow, Ito *et al.* in 1977²⁰⁴ have reported the presence of 1,2,3,7-tetramethoxyxanthone (93a), 1,2,3,6,7-pentamethoxyxanthone (93b) and 6-hydroxy-1,2,3,7-tetramethoxyxanthone (93c), reporting a tetraoxygenated xanthone for the first time from this family. Ghosal *et al.* also in 1977²⁰⁵ have reported for the first time several trioxygenated xanthone derivatives as 1-hydroxy-2,3-dimethoxyxanthone (94a), 1,2,3-trimethoxyxanthone (94b), 1-hydroxy-2,3-methylenedioxyxanthone (94c) and 1-methoxy-2,3-methylenedioxyxanthone (94d) (Fig. 29).

The occurrence of methyl ethers and methylenedioxy derivatives and pentaoxygenated compounds seems to be characteristic of this family. All the xanthones so far reported from the Polygalaceae show oxygenation at positions 1-, 2- and 3-. Four Polygala species investigated by us did not show the presence of xanthones.

Fig. 29.

Biosynthesis of xanthones

The biosynthetic pathways to xanthones have been discussed in recent years. Initially these attempted to interrelate the observed oxygenation pattern of natural xanthones and correlate them with recognised oxygenation patterns. If the xanthones from the Guttiferae are examined, it is seen that ring A and the attached CO group (C_7 unit) are provided by the shikimic acid pathway whereas ring B (C_6 unit) arises via the acetate-malonate polyketide route. Therefore polyhydroxy benzophenones or their biogentically equivalents could be intermediates in the formation of xanthones. These ideas⁵ are summarised in Fig. 30 in which the most frequently encountered sites of mono (a), di-(b,b) and tri-(c,c,c) for the shikimate derived ring A are shown.

Fig. 30. Biosynthesis of xanthones in higher plants.

The above biosynthetic pathway has been supported by the following experimental data:

(a) The radio labelled acetate studies of Floss and Retting²⁰⁶ have shown acetate incorporation in ring B of xanthones.

(b) Atkinson, Gupta and Lewis²⁰⁷ have confirmed the above results by showing 0.53% incorporation of 2-¹⁴C-acetate into the xanthones formed in the rhizomes of *Gentiana lutea* shown below:

(c) Lewis et al.²⁰⁷ have also shown that (i) the ¹⁴C-labelled phenylalanine was incorporated into ring A (ii) tritiated 2,3',4,6-tetrahydroxybenzophenone (95) was biosynthetically transformed into gentisein (96a), gentisin (96b) and isogentisin (96c) as in Fig. 31.

A number of mechanisms have been suggested for the transformation of polyoxygenated benzophenones to polyoxygenated xanthones.

(a) Direct oxidative coupling of 2,2'-dihydroxy benzophenone via radical intermediate (Lewis, 1963) as in Fig. 32.^{127,196,206-211}

(b) Intramolecular addition of hydroxy groups in quinonoid intermediates (Whalley,²¹¹ 1968) as in Fig. 33.

(c) Dehydration between the OH groups of the acetate and shikimate derived moieties (2,2'dihydroxy-benzophenone) via suitably activated intermediates such as O-phosphates (Seshadri,²¹³ 1961; Markham,²¹⁴ 1965) as in Fig. 34.

(d) Via spiro cyclohexadienone intermediate (Gottlieb,²¹⁵ 1968) as in Fig. 35.

 $\left| \right|_{c}$

Fig. 33.

Fig. 34.

The above mechanisms have been discussed by Scheinmann *et al.*⁴ (1969) and they conclude that "direct oxidative coupling of the benzophenones leads to a simpler explanation of the wide variety of oxidative patterns in (natural) 'xanthones'". They have also emphasised the frequent co-occurrence of pairs of corresponding xanthones like 5- and 7-monoxyxanthones, 1,5- and 1,7-dioxyxanthones, 1,5,6- and 1,6,7-trioxyxanthones and 1,3,5,6- and 1,3,6,7-tetraoxyxanthones as evidence of such a mechanism. An alternative explanation for this has been presented²²⁴ (see below).

Formation of naturally occurring xanthones by oxidation of polyhydroxy benzophenones with a variety of oxidising²¹⁶⁻²¹⁸ agents like potassium permangonate, potassium ferricyanide, manganese dioxide and quinone has been studied. Good yields of xanthones (40-70%) sometimes as isomeric xanthones corresponding to o- and p-coupling were observed. These studies have been extended^{216,217} with enzyme systems of the laccase and peroxidase types which too produced xanthones from polyhydroxy benzophenones.

There are only two known cases of the co-occurrence of benzophenones and xanthones. These are the results from *Gentiana* lutea (Fig. 31)²¹⁹ and *Symphonia globulifera*¹²⁴⁻¹²⁷ in which maclurin (97) and the two oxidative cyclisation products 1,3,5,6-tetrahydroxyxanthone (98) and 1,3,6,7-tetrahydroxyxanthone (99) were obtained as in Fig. 36.

Other transformations associated with the biosynthesis of natural xanthones are connected with the presence of methoxy, methylene dioxy groups, C_5 and C_{10} residues. The biogenetic origin²²⁰ of the C_5 and C_{10} units is definitely 3,3-dimethylallyl pyrophosphate and geranyl pyrophosphate and these units would enter the *ortho*- or *para*- position to the phenolic OH groups to give the respective products.

Gottlieb et al.⁵ first observed the natural co-occurrence of xanthones and aucuparins. These have been extended by the isolation of the first diphenyl carboxilic acid, hermonionic acid⁶ (48) from Garcinia hermonii Kosterm given earlier. This can be related to the two main routes of aldol condensation and acylation proposed by Birch in polyketide biosynthesis as in Fig. 37.

The correlation of the biosynthesis of flavonoids and stilbenes from cinnamoyl polyketide and the corresponding route with the 3,4,5-trioxybenzoylpolyketide to benzophenones or the diphenyl skeleton is shown in Figs. 37 and 38.

Fig. 38.

It will be useful to emphasise the clear distinction in xanthone biosynthesis in higher plants and the biosynthetic pathway for the xanthones from fungal metabolites. This can be illustrated by the synthesis of griseoxanthone $(100)^{221}$ by the acetate-malonate polyketide route as in Fig. 39.

Fig. 39.

Biogenesis of polyisoprenylated xanthonoids

Although there is no experimental data on the biosynthesis of polyisoprenylated xanthonoids, these compounds can be considered to be formed by polyisoprenylation of xanthone precursor. Ollis²²² has carried out a biogenetic analysis for gambogic acid, which exemplified this approach, and is therefore given in outline here. In gambogic acid the C_{36} skeleton is derived from xanthone (C_{13}) in association with one geranyl (C_{10}) and three isoprenoid ($3 \times C_3$) units. Following the postulated route to 2,2-dimethyl chromenes from O-3,3-dimethylallylphenol, the oxidative cyclisation of the *o*-hydroxy-geranyl grouping to the 2-methyl-2-(4-methylpent-3-enyl) chromene residue of gambogic acid becomes apparent. An internal Prins type of addition to a C=C double bond of a 3,3-dimethylallyl group, may account for the formation of the bridged bicyclo [2,2,2]-octenone. Ollis has postulated the following reactions for the formation of gambogic acid from the biogenetically acceptable 1,3,5,6-tetrahydroxyxanthone.

(i) C-alkylation by geranyl pyrophosphate and 3,3-dimethylallyl pyrophosphate.

(ii) Protonation of the intermediate ketol to give an oxonium cation.

(iii) Neutralisation of this intermediate by an internal Prins addition. All these mechanistically reasonable processes are summarised in his biognetic proposal given below in Fig. 40 for gambogic acid and related polyisoprenoids.

Fig. 40.

Venkataraman¹⁴⁰ in his Seshadri, 70th Birthday lecture (1973) has proposed a modified biosynthetic pathway. He considers that the suggestion of Ollis *et al.* that the pyrone oxygen initiates the step which lead to the bicyclo-octane ring system as improbable. According to him in keeping with the original scheme the pyrone CO is much more likely to trigger the concerted series of reactions as shown in Fig. 41.

In this scheme deoxymorellin is the first pigment formed in the biosynthesis and the progressive oxidation of a Me group then leads to morellinol, morellin and morellic acid.

Although polyhydroxy-benzophenones have been shown to give rise to xanthones both under enzymic conditions and with chemical reagents, the question of the co-occurrence of a large variety of polyhydroxyxanthones has not yet found a satisfactory answer. Carpenter *et al.* in their 1969 review postulated the formation of 15 standard xanthones resulting from the oxidative coupling of 9 benzophenone precursors. They also observed that whenever an oxygen function occurs at other than "standard positions they would be at position *ortho-* or *para-* to the standard oxygen function and attempted to explain these observations". Within the last 10 years a large number of xanthones have been isolated from *Mammea, Calophyllum, Mesua* and other Guttiferae genera and Gentianaceae species. These would require the co-occurrence of several benzophenone precursors. However there are only two examples where it has been experimentally established that benzophenones and xanthones co-occur. One in the Guttiferae species, Symphonia globulifera¹²⁴⁻¹²⁷ where maclurin (2,2',3,5',6- pentahydroxy-benzophenone) was isolated in a yield of 1.5% along with 1,3,5,6- and 1,3,6,7-tetra-hydroxyxanthone (Fig. 36). The other in the Gentianaceae species, Gentiana lutea⁷⁴ where the fresh rhizomes were shown to contain 0.0003% of 2,3',4,6-tetrahydroxybenzophenone, 0.002% of 1,3,7-trihydroxyxanthone and 0.014% of a mixture of gentisin and isogentisin (Fig. 31).

Rezende and Gottlieb²²³ consider 1,3,5,6- and 1,3,6,7-tetraoxygenation patterns as primitive characters in xanthone biosynthesis, as oxygen functions are always present at *para*-position in hydroxylated shikimate derived atomatic rings (ring A). Besides they have carried a frequency count on the number of different xanthones and shown 1,3-dioxygenation for the acetate derived ring B and 5,6- and 6,7dioxygenation for the shikimate derived ring A. Xanthones, which contain more or less oxygen function are said to be formed by oxidative or reductive steps as shown in Fig. 42.

Fig. 42. Changes in oxygenation of xanthones with evolutionary advancement.

From the frequency counts it is apparent that the Guttiferae and Gentianaceae contain different enzyme systems. They have attempted to relate the oxygenation pattern to the oxidation or reduction of the xanthone precursor. However it is possible to account for xanthone distribution in both the Guttiferae and Gentianaceae by dehydroxylation and/or hydroxylation mechanism on the xanthone molecule from the polyoxygenated xanthone itself.^{148,224}

Of the three Mammea species, studied, to date, the above mentioned tetraoxygenated xanthones were isolated from *M. africana*. The other two Mammea species had only mono- and di-oxygenated xanthones as in Table 15. Without postulating several hydroxybenzophenones, the Mammea xanthones

Table 15. Xanthones from	Mammea spe	cies (% dry	weight with	respect to p	lant parts)
--------------------------	------------	-------------	-------------	--------------	-------------

	M. acuminata (timber)	M. africana (timber)	M. americana (seeds)
2-Methoxyxanthone	2.65 × 10 ⁻³		+ *
2-Hydroxyxanthone	5.86 × 10 ⁻³	_	1.1 × 10 ^{−3}
4-Hydroxyxanthone	4.0×10^{-3}		0.7 × 10 ^{−3}
1-Hydroxy-7-methoxyxanthone	8.0 × 10 ⁻³	-	_
1,5-Dihydroxyxanthone	4.7 × 10⁻³	$\int \frac{1}{2} 4 \times 10^{-2^{\circ}}$	0.6×10^{-3}
1.7-Dihydroxyxanthone	6.9×10^{-3}	{ + 1 , 4 , 1	$0.6 imes 10^{-3}$
1-Methoxy-5-hydroxyxanthone	3.2 × 10 ⁻³	1.0 × 10 ⁻²	
3-Hydroxy-2-methoxyxanthone	8.0 × 10 ⁻⁴	_	-
2,6-Dihydroxyxanthone	3.8×10 ⁻⁴	_	_
1,5,6-Trihydroxyxanthone		$(+7.2 \times 10^{-2^{\circ}})$	-
1,6,7-Trihydroxyxanthone	—	1 +	_
1,3,6,7-Tetrahydroxyxanthone		$\int^{+} 1.2 \times 10^{-24}$	-
1,3,5,6-Tetrahydroxyxanthone	-	(+ ·····	-

"No separate percentages were available.

"No yield available.

can be considered to be formed by the nuclear reductions²²⁴ of 1,3,5,6- and 1,3,6,7-tetraoxygenated xanthones derived from maclurin as in Scheme given in Fig. 43. The scheme requires the removal of one or more aromatic OH groups and this is not uncommon. Mechanistically the removal of the aromatic OH groups would be even greater if they are situated at either ortho- or para- to the CO group as in Scheme given in Fig. 44²²⁵. Gottlieb's survey has shown that a number of xanthones with nuclear reduction at position 3 are common. This was found to be so in vitro.²²⁶ The other alternative to nuclear reduction in the xanthone biogenesis is the nuclear oxygenation of the simple xanthones, 2- and 4-hydroxyxanthones, derived from 2,3'-dihydroxy-benzophenone. Even though this would explain the biosynthesis of all the xanthones isolated from the Mammea species, 2,3'-dihydroxy-benzophenone would require an initial dehydroxylation of the acetate and shikimate units, or to recognise hydroxylation on an unactivated benzene nucleus for the conversion of, e.g. 4-hydroxyxanthone to 1,5-dihydroxyxanthone. The nuclear reductions of tetraoxygenated xanthones appear to be a more plausible biogenetic scheme for the formation of the xanthones in Mammea. The different oxygenation pattern of xanthones isolated from *Calophyllum, Mesua, Gurcinia* and other genera can thus be the result of nuclear reductions and similar oxygenation as will be discussed next.

Fig. 43. Biogenetic scheme for the synthesis of xanthones of Mammea.

1498

1,5,6-Trihydroxyxanthone

Fig. 44. Mechanism of the nuclear reduction of -OH group either para- or ortho- to the CO group.

From Gentiana lutea 2,3',4,6-tetrahydroxybenzophenone has been isolated together with 1,3,7-trihydroxyxanthone (Fig. 31).

So far only from *Canscora decussata* that 1,3,5-xanthone derivatives have been isolated. From other species a large number of 1,3,7,8- or 1,3,5,8-derivatives or compounds with hydroxylation at other *ortho*- or *para* position have been reported. These can readily arise by the indicated mechanism²²⁷ (in Fig. 45) without the need for other benzophenone precursors as follows:

In certain cases both mechanisms may be occurring, i.e. some being formed by a dehydroxylation process and the other by a hydroxylation. The former being more characteristic of the Guttiferae and the latter that of the Gentianaceae.

During the past few decades there has been considerable experimental examination of biogenetic theory which has led to some detailed understanding of many of the processes that are actually involved in the biosynthesis of natural products. Carpenter *et al.* in a review had referred to the co-occurrence of xanthones with 4-arylcoumarin and biflavonoids, but could not see a relationship among them. However Ollis has pointed to the fact that 4-arylcoumarins and 4-alkylcoumarins co-occur and has suggested that they may be formed by analogous biosynthetic pathway involving an aldol type of condensation of a polyketide with a β -keto acid. On this biogenetic hypothesis Ollis⁵ has directly correlated many of the natural products isolated from the Guttiferae. This hypothesis brings together not only the xanthones, benzophenones and aucuparin but also the 4-alkyl and 4-aryl coumarins. These can be derived from polyketide precursors by chain extension of oxygenated benzoic and cinnamic acids with one or three acetate residues.

Likewise biflavones isolated from the Guttiferae can be correlated on the basis that oxidative radical coupling in higher plants can take place between enols and phenols as well as between phenols. Ollis⁵ has given the following polketide routes (Fig. 46) to various classes of phenolic compounds isolated from the Guttiferae.

Fig. 46

Pharmacology

Xanthone derivatives have been shown to be effective as an allergy inhibitor, bronchodilator in the treatment of asthma etc.²²⁸ and synthetic work is in progress in several pharmaceutical firms. In the Ayurvedic systems of medicine plants belonging to the Gentianaceae find wide application, e.g. the use of Canscora decussata²²⁹ in some mental disorders like melancholia or the tuberculostatic acivity that has been reported for xanthones. Besides free xanthones show a higher tuberculostatic acitivity than the xanthone glycosides, e.g. the minimum inhibitory concentration for the aglycone was $10 \,\mu$ g/ml in comparison with mangiferin which required 200 μ g/ml.

Pharmacological investigations were first carried on the xanthone glycoside mangiferin. The early result of Finnegan²³⁰ on the diuretic and cardiotonic action of mangiferin in animals could not be fully confirmed. However by studying the extracts, fractions and pure compounds of Canscora decussata a remarkable CNS stimulating effect of mangiferin in 50-100 mg/kg has been observed. This could be blocked by pretreatment with chloropromazine. This effect manifested itself by hyperactivity, fine tremors, piloerection, increased spontaneous motility, sedation etc. The corresponding free xanthones either did not show the above properties or showed them to a much lower extent. In vitro experiments showed that the above was through a monoaminooxidase inhibition.²³¹

On the other hand Ghosal et al.²³² have observed in mice and rats the opposite CNS depressant or antipsychotic effect for xanthen-O-glycosides. This has interested an Italian group²³³ who have started investigation with model compounds.

These studies will gain greater importance in the future with the recognition of xanthones as an important group of secondary plant metabolites whose role is very little understood at the moment.

In this report the reviewer has tried to indicate the variety of xanthone structures found in the Guttiferae, the types of simple xanthones and their glycosides found in the Gentianaceae with a brief account of the xanthones found in Moraceae and Polygalaceae. Next the biogenesis of these compounds is discussed and lastly their potential pharmacological value has been indicated.

Acknowledgements-The reporter is indebted to all postgraduate students and colleagues who have participated in this programme and Professor R. H. Thomson (University of Aberdeen), Prof. W. D. Ollis (University of Sheffield), Prof. M. Shamma (Pennsylvania State University), Prof. I. Kitagawa (University of Osaka) and Dr. P. Bladon (University of Strathclyde) for the provision of physical data. The assistance of Mrs. S. C. Weerasekera and Mr. S. Surendrakumar in the preparation of this review is gratefully acknowledged.

REFERENCES

- ¹J. C. Roberts, Chem. Rev. 61, 591 (1961).
- ²F. M. Dean, Naturally Occurring Oxygen Ring Compounds. Butterworths, London (1963).
- ³O. R. Gottlieb, Phytochemistry 7, 411 (1968).
- ⁴I. Carpenter, H. D. Locksley and F. Scheinmann, *Ibid.* 8, 2013 (1969).
- ⁵W. D. Ollis, Ann. Acad. Brazil Cienc. 42, Supplement 9-23 (1970).
- 6S. P. Gunasekera, Ph.D. Thesis, University of Sri Lanka, Peradeniya Campus, Sri Lanka (1976).
- ⁷D. K. Bhardwaj, T. R. Seshadri and R. Singh, Phytochemistry 16, 1616 (1977).
- ⁸D. A. Okorie, *Ibid.* 15, 1799 (1976).
- 9ª G. G. deDalla Torve and H. Harms, Genera Siphonogamorum A. D. Systems Engelrianum Conscripta. Engelrianum, Lipsiae (1907); ^bM. Melchoir, A. Engler's Syllabus der Phantzenfamilen, (Revised Edition). Vol. 1. Bortraeger, Berlin (1964).
- ¹⁰W. M. Bandaranayake and M.U.S. Sultanbawa, List of Endemic Plants of Ceylon. University of Ceylon, Peradeniya (1969).
 ¹¹J. Attygalle, Sinhalese Materia Medica. Gunasena, Colombo (1971); J. P. C. Chandrasena, The Chemistry and Pharmacology of Ceylon and Indian Medicinal Plants. H. C. Press, Colombo (1955); E. Roberts, Vegetable Materia Medica of India and Ceylon. Plate, Colombo (1931).
- ¹²H. D. Locksley and I. G. Murray, J. Chem. Soc. (C), 1332 (1971).
- 13R. Alves de Lima, O. R. Gottlieb and A. A. Lins Mesquita, Ann. Acal. Brazil Cienc. 42, 133 (1970); "idem., Phytochemistry 11, 2307 (1972).

- ¹⁴T. R. Govindachari, D. Prakash and N. Viswanathan, Tetrahedron 24, 6411 (1968).
- ¹⁵S. K. Nigam and C. R. Mitra, Phytochemistry 8, 323 (1969).
- ¹⁶S. K. Nigam, C. R. Mitra, G. Kunesch, B. C. Das and J. Polonsky, Tetrahedron Letters 2633 (1967).
- ¹⁷T. R. Govindachari, D. Prakash and N. Viswanathan, Ibid. 4177 (1967); J. Chem. Soc. 1325 (1968).
- ¹⁸G. D. Breck and G. H. Stout, J. Org. Chem. 34, 4203 (1969).
- ¹⁹G. H. Stout and K. D. Sears, *Ibid.* 33, 4185 (1968).
- ²⁰R. Somanathan and M. U. S. Sultanbawa, J. Chem. Soc. Perkin I, 1935 (1972).
- ²¹R. D. Plattner, G. E. Spencer, D. Weisleder and R. Kielmann, Phytochemistry 13, 2957 (1974).
- ²²G. H. Stout, M. M. Krahn and G. D. Breck, Tetrahedron Letters 3285 (1968).
- ²³D. de Barros Correa, O. R. Gottlieb and M. Taveira Magalhaes, Ann. Acad. Brazil Cienc. 38, 269 (1966).
- ²⁴D. de Barros Correa, O. R. Gottieb and M. Taverira Magalhaes, Ibid. 38, 425 (1966).
- ²⁵O. R. Gottlieb, M. Taveira Magalhaes, M. D. Das Pereira, A Lins Mesquita, D. de Barros Correa and G. G. de Oliveira, Tetrahedron 24, 1601 (1968).
- ²⁶F. E. King, J. T. King and L. C. Manning, J. Chem. Soc. 3932 (1953).
- ²⁷I. Carpenter, H. D. Locksley and F. Scheinmann, Ibid. (C) 486 (1969).
- ²⁸E. Guerreiro, G. Kunesch and J. Polonsky, Phytochemistry 10, 2139 (1971).
- ²⁹S. P. Gunasekera and M. U. S. Sultanbawa, J. Chem. Soc. Perkin I, 2215 (1975).
- ³⁰J. Polonsky and R. Toubiana, C. R. Acad. Sci. 242, 2877 (1956).
- ³¹S. P. Gunasekera, G. S. Jayathilaka, S. Selliah and M. U. S. Sultanawa, J. Chem. Soc. Perkin I, 1505 (1977).
- ³²H. D. Locksley and I. G. Murray, *Ibid.* (C), 1567 (1969).
- ³³K. Kuwazu, H. Ohigashi, N. Takanashi and T. Mitsui, Bull. Inst. Chem. Res. Kyoto Univ. 59, 160 (1973).
- ³⁴G. H. Stout and G. D. Breck, Tetrahedron Letters 1999 (1970).
- ¹⁵T. R. Govindachari, N. Viswanathan, B. R. Pai, U. Ramadas Rao and M. Siriniwasan, Tetrahedron 23, 1901 (1967).
- ³⁶P. S. Sampathkumar, V. V. S. Murti, T. R. Seshadri, Indian J. Chem. 8, 105 (1970).
- ³⁷J. Polonsky, C. R. Acad. Sci. 242, 2961 (1956); Bull. Soc. Chim. Fr., 1079 (1957).
- 34S. Fonsecae, G. Luiz, O. R. Gottlieb and M. Taveira Magalhaes, Ann. Acad. Brazil Cienc. 40, 155 (1968).
- ³⁹P. Shalan, A. L. Jeboury and H. D. Locksley, Phytochemistry 10, 603 (1971).
- ⁴⁰V. Kumar, S. Ramachandran and M. U. S. Sultanbawa, Ibid. 15, 2016 (1976).
- ⁴¹J. Polonsky and R. Toubriana, C. R. Acad. Sci. 242, 2877 (1956).
- ⁴²B. Jackson, H. D. Locksley and F. Scheinmann, Phytochemistry 927 (1969).
- ⁴³G. H. Stout and G. D. Breck, Diss. Abs. Inter. 31, 3909-B (1971).
- ⁴⁴F. Scheinmann and Nuan-Anong Sripong, Phytochemistry 10, 1331 (1971).
- ⁴⁵G. H. Stout, G. K. Hickernell and K. D. Sears, J. Org. Chem. 33, 4191 (1968).
- *S. Karunanayake, M. Sc. Thesis, University of Sri Lanka, Peradeniya (1977); S. Karunanayake, S. Sotheeswaran and M. U. S. Sultanbawa, unpublished results.
- "M. Dahanayke and M. U. S. Sultanbawa, unpublished work.
- ⁴⁶B. Subramaniam, F. Scheinmann and A. Jefferson, Phytochemistry 14, 298 (1975).
- ⁴⁹E. Guerreiro, G. Kunesch and J. Polonsky, Ibid. 12, 185 (1973).
- ⁵⁰B. Jackson, H. D. Locksley and F. Scheinmann, J. Chem. Soc. (C), 178 (1966).
- ⁵¹B. Jackson, H. D. Locksley and F. Scheinmann, Ibid. (C), 2500 (1967).
- 52B. Jackson, H. D. Locksley and F. Scheinmann, Ibid. (C), 871 (1967).
- ⁵³B. Jackson, H. D. Locksley and F. Scheinmann, Tetrahedron 24, 3059 (1968).
- ⁵⁴M. Dahanayake, I. Kitagawa, R. Somanathan and M. U. S. Sultanbawa, J. Chem. Soc. Perkin I, 2510 (1974).
- 55 R. Somanathan and M. U. S. Sultanbawa, Ibid. Perkin I, 2515 (1974).
- ⁵⁶T. R. Govindachari, P. S. Subramaniam, B. R. Pai, P. S. Kalyanaraman and N. R. Rao, Indian J. Chem. 9, 772 (1971).
- ⁵⁷S. Karunanayake, S. Sotheeswaran and M. U. S. Sultanbawa, Tetrahedron Letters, 4977 (1979).
- 58 David L. Dreyer, Phytochemistry 13, 2883 (1974).
- ⁵⁹L. E. McCandlesh, J. C. Hanson, G. H. Stout, Acta Crystallograchica, Sec. B 32(6), 1793 (1976).
 ⁶⁰H. C. de Araujo, T. R. Mahajan, O. R. Gottlieb and M. Taveira Magalhaes, Ann. Acad. Brazil Cienc. 38, 429 (1966).
- ⁶¹G. H. Stout, V. F. Stout and M. J. Welsh, Tetrahedron 19, 667 (1963).
- ⁶²G. H. Stout, V. F. Stout and M. J. Welsh, Tetrahedron Letters 541 (1962).
- ⁴³G. G. de Oliveria, A. A. Lins Mesquita, O. R. Gottlieb and M. Taveira Magalhaes, Ann. Acad. Brazil Cienc. 38, 421 (1966).
- ⁶⁴B. Jacksin, H. D. Locksley, I. Moore and F. Scheinmann, J. Chem. Soc. (C), 2579 (1968).
- ⁶⁵B. Jackson, H. D. Locksley, F. Scheinmann and W. A. Wolstenholme, *Ibid.* (C), 3791 (1971).
- ⁶⁶M. M. Krahn, Ph.D. Thesis, University of Washington (1968) via Diss. Abs. B 29, 941 (1968).
- ⁶⁷H. H. Lee and H. K. Chan, Phytochemistry 16, 2038 (1977).
- ⁶⁸B. R. Pai, private communication.
- ⁶⁹W. H. Ansari, W. Rahaman, D. Barraclough, R. Maynard and F. Scheinmann, J. Chem. Soc. Perkin I, 1458 (1976).
- ⁷⁰W. M. Bandaranayake, S. S. Selliah and M. U. S. Sultanbawa and W. D. Ollis, *Phytochemistry* 14, 1878 (1975).
- ⁷¹B. Jackson, H. D. Locksley, F. Scheinmann and W. A. Wolstenholme, Tetrahedron Letters 787 (1967).
- ⁷²B. Jackson, H. D. Locksley and F. Scheinmann, J. Chem. Soc. (C), 2201 (1969).
- ⁷³J. Jobst and O. Hesse, Liebigs Ann. 199, 17 (1967).
- ⁷⁴S. P. Gunasekera and M. U. S. Sultanbawa, unpublished results (1976).
- ⁷⁵W. D. Ollis, B. T. Redman and I. O. Sutherland, Chem. Comm. 879 (1969).
- ⁷⁶A. V. Ram Rao, K. Venkataraman and S. S. Yemul, *Tetraedron Letters* 4981 (1973).
- 7P. J. Cotterill, F. Scheinmann and G. S. Puranik, Phytochemistry 16, 148 (1977); P. J. Cotterill, F. Scheinmann and I. A. Stenhouse, J. Chem. Soc. Perkin I, 532 (1978).
- ⁷⁸Fa-Ching Chen, Yuh Meei Lin and Jeng-Chin Hung, Phytochemistry 14, 300 (1975).
- ⁷⁹M. Konoshima, Y. Ikeshiro and S. Miyahara, Tetrahedron Letters 4203 (1970); ^oG. G. Karanigoakar, A. V. Rama Rao, K. Venkataraman, S. S. Yemul and K. J. Palmer, Ibid. 4977 (1973); *A. V. Rama Rao, G. Venkatswamy and S. S. Yemul, Chem. & Ind. 92 (1979); A. V. Rama Rao, Review of Pigments of Garcinia Species. Personal communication.
- ²⁰A. Pelter, R. Warren, K. K. Chexal, B. K. Handa and W. Rahman, Tetrahedron 27, 1625 (1971).
- ⁸¹P. Yates and G. H. Stout, J. Am. Chem. Soc. 80, 1691 (1958).
- ⁸²P. Yates and H. B. Bhat, Can. J. Chem. 46, 3770 (1968).

- ⁸³A. Jefferson, A. J. Ouillimann, F. Scheinmann and K. Y. Sim., Austral. J. Chem. 23, 2539 (1970).
- ²⁴T. R. Govindachari, P. S. Kalyanaraman and N. Muthukumarswamy and B. R. Pai, Tetrahedron 27, 3919 (1971).
- ⁸⁵D. M. Holloway and F. Scheinmann, Phytochemistry 14, 2517 (1975).
- ⁸⁵^aE. G. Crichton and P. G. Waterman, *Ibid.* 1979, 18, 1553.
- ⁸⁶C. G. Karanjgaokar, P. M. Nair and K. Venkataraman, Tetrahedron Letters 687 (1966).
- ⁸⁷P. Yates, S. S. Kamarkar, G. H. Stout and V. F. Stout, Tetrahedron Letters 1623 (1963); *C. G. Karanjgaokar, P. V. Radhakrishnan and K. Venkataraman, Ibid. 3195 (1967).
- C. G. Karanjgaokar, A. V. Rama Rao, K. Venkataraman and S. S. Yemul, *Ibid.* 4977 (1973).
 A. V. Rama Rao, M. R. Sarma, K. Venkataraman and S. S. Yemul, *Phytochemistry* 13, 1241 (1974).
- ⁹⁰M. Konoshima and Y. Ikeshiro, Tetrahedron Letters 1717 (1970); M. Konoshima, Y. Ikeshiro, S. Miyahara and Kum-Yingyen, Ibid. 4203 (1970); M. Konoshima, Y. Ikeshiro, A. Nishinaga, T. Matsura, T. Kubata and H. Sakamato, Ibid. 121 (1969).
- ⁹¹B. S. Joshi, V. N. Kamat and N. Viswanathan, Phytochemistry 9, 881 (1970).
- ⁹²G. A. Hebin, B. Jackson, H. D. Locksley and F. Scheinmann, Ibid. 9, 221 (1970).
- ⁹³E. Ritchie and W. C. Taylor, Tetrahedron Letters 1431 (1964).
- ²⁴S. P. Gunasekera, S. Selliah and M. U. S. Sultanbawa, J. Chem. Soc. Perkin I, 1539 (1975).
- ⁹⁵G. A. O. Ferreira, O. R. Gottlieb and A. A. Lins Mesquita, Phytochemistry 11, 1512 (1972).
- *O. R. Gottlieb, M. T. Magalhaes, M. Camey, A. A. Lins Mesquita and D. de Barros Correa, Tetrahedron 22, 1777 (1966).
- ⁹⁷A. Pimenta, A. L. Mesquita, M. Camey, O. R. Gottlieb and M. Taveira Magalhaes, Ann. Acad. Brazil Cienc. 36, 239 (1964).
- ⁹⁸D. de Barros Correa, O. R. Gottlieb and M. Taveira Magalhaes, *Ibid.* 38, 269 (1966).
- 99O. R. Gottlieb and G. M. Stefani, Phytochemistry 9, 453 (1970).
- 100 L. D. Antonaccio, L. C. Fonseka de Silva, D. de Barros Correa, O. R. Gottlieb and M. Taveira Magalhaes, Ann. Acad. Brazil Cienc. 37, 229 (1965).
- 101 L. D. Antonaccio. G. M. Stefani, O. R. Gottlieb and M. T. Magalhaes, Ibid. 37, 231 (1965).
- 102O. R. Gottlieb, A. A. Lins Mesquita, E. M. da Silva and M. T. de Melo, Phytochemistry 8, 665 (1969).
- 163O. R. Gottlieb, M. Taveira Magalhaes, M. D. da S. Pereira, A. Lins Mesquita, D. de Barros Correa and G. G. de Oliveria, Tetrahedron 24, 1601 (1968).
- 104O. R. Gottlieb, A. A. Lins Mesquita and T. J. Nagam, Phytochemistry 10, 2253 (1971).
- ¹⁰⁵D. de Barros Correa, L. G. Fonseca, E. Silva, O. R. Gottlieb and S. Janot Goncalves, *Ibid.* 9, 447 (1970).
- ¹⁰⁶O. R. Gottlieb, A. A. Lins Mesquita, G. G. de Oliveira and M. T. D. Melo, Ibid. 9, 2537 (1970).
- ¹⁰⁷R. Braz Filho, M. de J. Countiho Lemos and O. R. Gottlieb, *Ibid.* 12, 947 (1973).
- ¹⁰⁸I. Carpenter, H. D. Locksley and F. Scheinmann, J. Chem. Soc. (C), 2421 (1969).
- ¹⁰⁹R. A. Finnegan and P. L. Blachmann, J. Pharm. Sci. 54, 633 (1965).
- ¹¹⁰R. A. Finnegan, J. K. Patel and P. L. Blachmann, Tetrahedron Letters 6087 (1966).
- ¹¹¹R. A. Finnegan and J. K. Patel, J. Chem. Soc. Perkin 1, 1896 (1972).
- ¹¹²B. S. Joshi, V. N. Kamat, T. R. Govindachari and A. K. G. Ganguly, Tetrahedron 25, 1453 (1969).
- ¹¹³Y. L. Chow and H. H. Quon, Phytochemistry 7, 1871 (1968).
- 14T. R. Govindachari, B. R. Pai, P. S. Subramaniam, U. R. Rao and N. Muthukumarswamy, Tetrahedron 23, 243 (1967).
- ¹¹⁵S. P. Gunasekera and M. U. S. Sultanbawa, J. Chem. Soc. Perkin I, 6 (1977).
- ¹¹⁶S. P. Gunasekera, S. Ramachandran, S. S. Selliah and M. U. S. Sultanbawa, *Ibid.* Perkin, 2447 (1975).
- 117W. M. Bandaranayake, S. S. Selliah, M. U. S. Sultanbawa and D. E. Games, Phytochemistry 14, 265 (1975).
- ¹¹⁸J. P. de P. Dias, R. Gottlieb and A. A. L. Mesquita, *Ibid.* 13, 1953 (1974).
- ¹¹⁹H. D. Locksley and I. G. Murray, *Ibid.* 10, 3179 (1971).
- ¹²⁰S. P. Gunasekera, K. Sivapalan, M. U. S. Sultanbawa and W. D. Ollis, J. Chem Soc. Perkin I, 11 (1977).
- ¹²¹P. J. Owen and F. Scheinmann, Ibid. Perkin I, 1018 (1974).
- ¹²²D. P. Spoelestra and M. J. Van Royen, Rec. Trav. Chem. 48, 370 (1929).
- ¹²³P. Braz Filho, G. Carvalcante de Magalhaes and O. R. Gottlieb, Phytochemistry 9, 673 (1970).
- ¹²⁴H. D. Locksley, I. Moore and F. Scheinmann, J. Chem. Soc. (C), 430 (1966).
- ¹²⁵H. D. Locksley, I. Moore and F. Scheinmann, Ibid. (C), 2265 (1966).
- ¹²⁶H. D. Locksley, I. Moore and F. Scheinmann, Ibid. (C), 2186 (1966).
- ¹²⁷H. D. Locksley, I. Moore and F. Scheinmann, Tetrahedron 23, 2229 (1967).
- ¹²⁸S. J. Gabriel and O. R. Gottlieb, Phytochemistry 11, 3035 (1972).
- 129W. G. de Oliverira, O. R. Gottlieb and A. A. Lins Mesquita, Ibid. 11, 3323 (1972).
- 130 A. A. Lins Mesquita, W. G. de Oliveira, R. M. T. Neiva and O. R. Gottlieb, Ibid. 14, 803 (1975).
- 131 M. Marta, F. Della Monache, G. B. Marini Bettolo, D. A. Lyra, J. F. de Mell and O. G. de Lima, Gazz. Chim. Ital. Series 106 No. 7/8, 651 (1976).
- ¹³²S. M. Anand and A. C. Jain, Austral. J. Chem. 27, 1515 (1974).
- ¹³³N. H. Dyson and W. Rigby, J. Chem. Soc. 1858 (1963).
- ¹³⁴S. A. Ahmad, W. Rigby and R. B. Taylor, J. Chem. Soc. (C), 772 (1966).
- 135B. J. Hunt and W. Rigby, Chem. & Ind. 1790 (1967).
- 136W. D. Ollis, M. V. J. Ramsay, I. O. Sutherland and S. Mongolsuk, Tetrahedron 21, 1453 (1965).
- ¹³⁷M. Amorosa and G. Giobaninetti, Ann. Chem. Italy 56, 232 (1966).
- ¹³⁸W. Liesenklas and H. Auterhoff, Arch Pharm. 299, 91 (1966).
- ¹³⁹H. Auterhoff, H. Fraudendorf, W. Liesenklas and C. Schwandt, Angew. Chem. International Ed. 1, 455 (1962).
- 140K. Venkataraman, Proc. Indian Natl. Sci. Acad. 39, 365 (1974).
- ¹⁴¹J. F. Blount and T. H. Williams, Tetrahedron Letters 2921 (1976).
- ¹⁴²G. Kartha, N. Ramachandran, H. B. Bhat, P. M. Nair, V. K. C. Raghaven and K. Venkataraman, Tetrahedron Letters 459 (1963); P. M. Nair and K. Venkataraman, Indian. J. Chem. 2, 402 (1964); H. B. Bhat, P. M. Nair and K. Venkataraman, Ibid. 2, 405 (1964).
- 143P. D. Adawadkar, R. Siriniwasan and S. S. Yemul, Ibid. 14B, 19 (1976).
- 144O. R. Gottlieb and M. T. Magalhaes, Ann. Acad. Brazil Cienc. 38, 439 (1966)
- 145 J. P. Cotterill, P. J. Owen and F. Scheinmann, J. Chem. Soc. Perkin I, 2423 (1974).
- 146 J. F. Castelao, O. R. Gottlieb, R. A. de Lima, A. L. Mesquita, H. E. Gottlieb and E. Wenkert, Phytochemistry 16, 735 (1977).
- 147H. Nielson and P. Arends, Ibid. 17, 2040 (1978).
- 148S. Karunanayake, S. Sotheeswaran and M. U. S. Sultanbawa, Indian J. Chem. (in the Press) (1980).
- ¹⁴⁹C. G. Karanjgaoker, A. V. Rama Rao, K. Venkataraman and S. S. Yemul, Tetrahedron Letters 4977 (1973).

- ¹⁵⁰M. Kaldas, I. Miura and K. Hostettman, Phytochemistry 17, 295 (1978).
- ¹⁵¹S. Ghosal, P. V. Sharma and R. K. Chaudhuri, *Ibid.* 14, 1393 (1975).
- ¹⁵²M. Marcel, C. Jacques and M. Darins, Bull. Mus. Natl. Hist. Nat. Sci. Phys. Chim. 10, 45 (1976).
- ¹⁵³K. Hostettmann and H. Wagner, Phytochemistry 16, 821 (1977).
- ¹⁵⁴S. Iseda, Bull Chem. Soc. Japan 30, 625 (1957).
- ¹⁵⁵L. J. Haynes and D. R. Taylor, J. Chem. Soc. (C), 1685 (1966).
- ¹⁵⁶P. E. Nott and J. C. Roberts, Phytochemistry 7, 741 (1967).
- ¹⁵⁷V. K. Bhatia and T. R. Seshadri, Tetrahedron Letters 1741 (1968).
- ¹⁵⁸M. Aritomi and T. Kawasake, Chem. Pharm. Bull. 18, 2327 (1970).
- ¹⁵⁹M. Aritomi and T. Kawasake, *Ibid.* 18, 224 (1970).
- 160S. Ghosal and R. K. Chaudhuri, Phytochemistry 12, 2025 (1971).
- ¹⁶¹M. Arisawa, M. Morita, A. Kondo and T. Takemoto, Chem. Pharm. Bull. 21, 2562 (1973).
- 162D. M. Smith and J. B. Harborne, Phytochemistry 10, 2117 (1971).
- 163 M. Goetz and A. Jacot-Guillarmod, Helv. Chim. Acta 66, 2104 (1977).
- 164S. Ghosal, R. Ballava, P. S. Chauhan, K. Biswas and R. K. Chaidhuri, Phytochemistry 15, 1041 (1976).
- ¹⁶⁵L. Canonica and F. Pelizzoni, Gazz. Chim. Ital. 85, 1007 (1955).
- 166G. Bellman and A. Jacot-Guillarmod, Helv. Chim. Acta 56, 284 (1973).
- 167 A. M. Verny and A. M. Debeimas, Ann. Pharm. Fr. 31, 415 (1973).
- 168H. Inouye, S. Veda, M. Inada and M. Thujii, Yakugaku Zasshi 91, 1022 (1971).
- 169S. Ghosal, P. V. Sharma and R. K. Chaudhuri, Phytochemistry 14, 2671 (1975).
- ¹⁷⁰S. Ghosal, P. V. Sharma and R. K. Chaudhuri, J. Pharm. Sci. 63, 1286 (1974).
- ¹⁷¹I. Tomimore, M. Yoshizaki and T. Nanba, Yakugaku Zasshi 93, 442 (1973).
- 172T. Tomimori and H. Komatsu, Yakugaku Zasshi 89, 1276 (1969).
- ¹⁷³G. H. Stout and W. S. Balkenhol, Tetrahedron 25, 1947 (1969)
- 174M. Kaldas, K. Hostettmann and A. Jacot-Guillarmod, Helv. Chim. Acta 57, 294 (1974).
- ¹⁷⁵M. Kaldas, Thesis, University of Neuchatel (1977).
- ¹⁷⁶K. Hostettmann and A. Jacot-Guillarmod. Helv. Chim. Acta 59, 1584 (1976).
- ¹⁷⁷K. Hostettmann, R. Tabacchi and A. Jacot-Guillarmod, Ibid. 57, 294 (1974).
- 178K. Hostettmann and A. Jacot-Guillarmod, Ibid. 57, 1156 (1974).
- ¹⁷⁹K. Hostettmann and A. Jacot-Guillarmod, *Phytochemistry* 16, 481 (1977).
 ¹⁸⁰K. Hostettmann, A. Jacot-Guillarmod and V. M. Chari, *Helv. Chim. Acta* 59, 2592 (1976).
- ¹⁸¹J. Carbonnier, M. Massias, M. C. Jarreau-Carbonnier and D. Molho, Travaux de La Jaysinia 4, 169 (1972).
- ¹⁸²P. Rivaille, J. Massicot, M. Guyot and V. Plouvier, Phytochemistry 8, 1533 (1969).
- 183 P. Rivaille and D. Raulais, C. R. Acad. Sci. Paris (D), 269, 1121 (1969).
- 14H. Wagner, Progress in the Chemistry of Organic Natural Products (Edited by W. Herz, H. Grisebach, and G. W. Kirby), Vol. 31, pp. 155. Springer-Verlag, Wien (1974).
- 183 M. Kaldas, K. Hostettmann and A. Jacot-Guillarmod, Helv. Chim. Acta 58, 2188 (1975).
- ¹⁸⁶I. Carpenter, H. D. Locksley and F. Scheinmann, Phytochemistry 8, 2013 (1969).
- ¹⁸⁷K. Hostettmann and I. Miura, Helv. Chim. Acta 60, 262 (1977).
- 188 V. Plouvier, J. Massicot and P. Rivaille, C.R. Acad. Sci. Paris (D) 264, 1219 (1967).
- ¹⁸⁹A. M. Verney and A. M. Delbelmas, Ann. Pharm. Fr. 31, 415 (1973).
- ¹⁹⁰A. Arnone, G. Gardillo, L. Merlini and R. Modelli, Tetrahedron Letters 4201 (1967).
- ¹⁹¹A. B. Kulkarni, B. D. Hosangadi and N. A. Kudav, Some Recent Developments in the Chemistry of Natural Products (Edited by S. Rangaswami and N. V. Subba Rao). Prentice-Hall of India Private, New Delhi (1972).
- ¹⁹²A. Engler and K. Pranti, Die Natürlichen Pflanzerfamilien iv/2. Teil, Engelman Verlag, Leipzig (1897).
- 193K. Venkataraman, Phytochemistry 11, 1571 (1972).
- 194M. L. Wolfrom, E. E. Dickey, P. McWain, A. Thompson, J. H. Locker, O. M. Windrath and F. Komitzky, Jr., J. Org. Chem. 29, 689 (1964).
- 195V. H. Deshpiande, A. V. Rama Rao, M. Varadan and K. Venkataraman, Indian J. Chem. 11, 518 (1973).
- ¹⁹⁶J. K. Kirtany and S. K. Paknik, *Ibid.* 13, 104 (1975).
- 197P. J. Cotterill and F. Scheinmann, Chem. Comm. 664 (1975).
- 198 A. Jefferson and F. Scheinmann, "Nature 207, 1193 (1965); "J. Chem. Soc. Soc. C. 175 (1966).
- 199V. V. S. Murti, T. R. Seshadri and S. Sivakumaran, Phytochemistry 11, 2089 (1972).
- 200 J. Moron, J. Polonsky and H. Pourrat, Bull. Soc. Chim. Fr. 130 (1967).
- ²⁰¹G. H. Stout and J. L. Fries, Tetrahedron 25, 5295 (1969).
- ²⁰²D. L. Dreyer, *Ibid.* 25, 4415 (1969).
- ²⁰³C. N. S. Andreade, R. B. Fo, O. R. Gottlieb and E. R. Silveira, Lloydia 40, 344 (1970).
 ²⁰⁴H. Ito, H. Taniguchi, T. Kita, Y. Matsuki, E. Tachikawa and F. Tetsuro, Phytochemistry 16, 1614 (1977).
- ²⁰⁵S. Ghosal, S. Banerjee, R. B. Chauhan and S. R. Srivastava, J. Chem. Soc. Perkin I, 740 (1977).
- ²⁰⁶H. G. Floss and A. Rettig, Z. Naturforsch. 19B, 1103 (1964).
- ²⁰⁷J. E. Atkinson, P. Gupta and J. R. Lewis, Chem. Comm. 1386 (1968).
- ²⁰⁸J. R. Lewis, Proc. Chem. Soc. 373 (1963).
- ²⁰⁹J. R. Lewis and B. H. Warrington, J. Chem. Soc. 5074 (1964).
- ²¹⁰J. E. Atkinson and J. R. Lewis, Chem. Comm. 803 (1967).
- ²¹¹R. C. Ellis, W. B. Whalley and K. Ball, Chem. Comm. 803 (1967).
 ²¹²P. W. Westerman, S. P. Gunasekera, M. U. S. Sultanbawa and R. Kazlauskas, Organic Magnetic Resonance Vol. 9(11), 631 (1977).
- ²¹³S. Neelakantan and T. R. Seshadri, Current Soc. 30, 90 (1961).
- ²¹⁴K. R. Markham, Tetrahedron 21, 3687 (1965).
- ²¹⁵O. R. Gottlieb, Phytochemistry 7, 411 (1968).
- ²¹⁶J. E. Atkinson and J. R. Lewis, J. Chem. Soc. (C), 381 (1969).
- ²¹⁷J. W. A. Findlay, P. Gupta and J. R. Lewis, Ibid. (C), 2761 (1969).
- ²¹⁸H. D. Locksley and I. G. Murray, Ibid. (C), 392 (1970).
- ²¹⁹J. E. Atkinson, P. Gupta and J. R. Lewis, Tetrahedron 25, 1507 (11969).

²²⁰W. D. Ollis and I. O. Sutherland, Recent Developments in the Chemistry of Natural Phenolic Compounds. p. 74, Pergamon, Oxford (1961).

221 A. I. Scott, Quart. Rev. 19, 1 (1965).

222W. D. Ollis, M. V. J. Ramsay and I. O. Sutherland and S. Mongolsuk, Tetrahedron 21, 1453 (1965).

²²³C. M. A. da M. Rezende and O. R. Gottlieb, Biochemical Systematics 1, 111 (1973).

²²⁴M. U. S. Sultanbawa, Proc. 3rd Asian Symposium on Medicinal Plants and Spices, Colombo, 6-12 Feb. (1977). Plenary Lecture (UNESCO, 1979) p. 226.

²²⁵A. J. Birch, Private communication.

226 A. C. Jain, O. P. Mittal and T. R. Seshadri, J. Sci. Industrial Res. India 12B, 647 (1953).

²²⁷Martin Luther, Secondary Metabolism in Plants and Animals (Translation by T. N. Vasudevan), p. 43 Chapman & Hall, London (1972).

228 W. D. Jones, W. L. Albrecht, N. L. Munro and K. T. Stewart, Journal of Medicinal Chemistry 20, 594 (1977).

²²⁹S. K. Battacharya, S. Ghosal, R. K. Chaudhuri and A. K. Sanyal, J. Pharm. Sci. 61, 1839 (1972).

²³⁰R. A. Finnegan, G. M. Stephani, G. Ganguli and S. K. Battacharya, *Ibid.* 57, 1039 (1968).

²³¹P. V. Sharma, Ph.D. Thesis, Banaras Hindu University, Varanasi-5-India (1974).

232S. Ghosal, P. V. Sharma, R. K. Chaudhuri and S. K. Battacharya, J. Pharm. Sci. 64, 80 (1975).

233 P. Valenti, A. Borracini, P. Da Re and L. Lima, Eur. J. Med. Chem. Chimica Therapeutica part X-XII, 10, 387, 390, 394 (1975).

APPENDIX

Plant species studied in the family Guttiferae

Genus:	Allanblackia Oliver			G. indica	77
	A. floribunda Oliver	12		G. kola Heckel	77a
Genus:	Caraipa Aubl.			G. linii Chang	78.79
	C. densiflora	13, 13a		G. livingstonii	80
	C. grandiflora	13		G. maneostana L.	81_85
Genus:	Calophyllum L.			G. mannii Oliy	859
	C. apetalum Willd.	apetalum Willd. 14–17		G. morella Desr.	86-87
	C. australianum P. M. Vesa.	18		G multiflora	78 79
	C. blancoi Pl. and Tr.	19		G. nedunculata	RR 89
	C. hracteatum Thw.	20		G. rubra Merrill	66
	C. brasiliense Camb	21-26		G spicata Hook f	90
	C. calaba L.	20		G talbati Reiz	91
	C. canum Hook.	27		G terprophylla Thw	70
	C. chapelieri Drake	28		G polkensii Engl	07 07
	C cordato-oblangum Thy	29		G ranthochymus Hook f	70
	C costatum Bill	30	Genus	Harussana Thou	/3
	C cuneifolium Thw	31	Genus	H madagascariensis Doir	02
	C fragrans Ridley	37	Genus	Kayee Wall	,,
	C inophyllum I	22 33.42	Ochua.	K stylosa Thy	04
	C. mophynam E.	<i>LL</i> , <i>35</i> -4 <i>L</i>	Genue	K. Stylosa 111w. Vialmayara Mart	74
	C Januifalium Wild	43	Ochus.	K candidissima	05
	C neo-ehudicum Guillaumin	45 AA		K. canalaissina K. canalaissina	39 0K 07
	C nanuanum Lauterh	55		K commbase (Spr.) Most	30, 70, 77
	C. pulcherrimum Wall	NG A7		K. corymousu (Spi.) Mail	70, 70
	C. ramiflorum Schutzra	40,47		K. ferrusinge A. D. Duorte	99-101 100
	C recedenc lumalla and Derrier	40		K. petiologie (Ser.) Mont	102
	C. recears Junena and Ferrer	49 50		K man	101, 103
	C. scriblitifalium Hend and	50		K. nihriflang Camb	30 104
	Wyott Smith	\$1.53		K munastria A D Duorta	104
	C soulattri Burm f	31-55		K. rupestris A. F. Duarte	100 62 106
	C. southant Burn. I.	51	Compos	K. speciosa SL. Hill	05, 100
	C. tomentosum Wight	15 16 46	Ocitus.	Lorostemon Duck	107
	C. transmission Wight	15,10,40		L. Coencer Paula	107
	C. malkari Wight	54	Comus	L. negrensis riuss	107
	C. raylanicum Kosterm	54	Genus:	Mammeu L.	16
Conver	Chucia I	57		M. actions C. Der	40
Ocitus.	Ciusia L.	C Q		M. apricana U. Don	106
	C. roseu Jacq.	50		M. umericana L. M. Ionoifelia (Winha) Disnah	109-111
	Clusia species	57		M. longifolia (wight) Planch	110
Contras	Cratevular Bluese	00	Comme	and I nana	112
Ocilus.	C adibiaum Dhuma	61 69	Ochus:	Mesuu L.	
Comuni	C. centricum Diume	01,02		M. ferrea L.	115, 114
Ocilius.	G hushangaii Bakan	63.68		M. mynijolia M. selisise Di sed Te	115
	G. combosis Deer	63-63 49		M. saucina Pl. and II.	110
	G. come Khmp	00 66 67		M. Inwattesti Planch and	417
	G. dulais (Boxh) Kura	40	George	I rialia Moro-abaa	117
	G schinocama Thy	10	Octus:	Moronooea	110
	G eugenitalia Wall	65 71 73	Genua	Deheocomus Then	119
	G hanburyi Hook f	73	Octius.	O adoratua	110
	G hermonii Kosterm	74	Games	Dentaderma Sabine	119
	G hombroniana Pierre	75 76	Ochus:	P butyracaa Sobioo	120
	O. NOWNOMMENT LIGHT	75,10		r. vm yracca baonie	120

Genus: Genus:	Pentaphalangium P. solomonse Warb. Platonia Mart P. insianis Mart	121	Genus:	Tovomita Auble T. choisyana Pl. and Tr. T. macrophylla (Pl. and Tr.) Walp T. pyrifolium T. mangle	128 129
Genus: Genus:	Rheedia L. R. gardneriana Pl. and Tr. Symphonia L. S. globulifera L.	122			120
		123			130
		124-127			